
- •1) Основные законы химии: сохранения массы и энергии, постоянство состава, эквивалентов и Авогадро.
- •2) Закон постоянства состава с современной точки зрения. Соединения постоянного и переменного состава.
- •3) Закон эквивалентов. Эквивалент элементов и соединений.
- •4) Классы неорганических соединений.
- •5) Модель строения атома Резерфорда
- •6) Теория строения атома Бора. Недостатки теории строения.
- •7) Принципы квантов механики: дискретность энергии, корпускулярно-волновой дуализм, принципы неопределенности Гейзенберга.
- •8) Уравнение Шредингера. Смысл волновой функции.
- •9) Квантовые числа. Их значение и сущность.
- •10) Электронного уравнения, подуровня, орбитали.
- •11) Правила и принципы, определяющие последовательность формирования электронных уровня и подуровня.
- •13) Периодический закон д.И.Менделеева. Периодичность в изменении различных свойств элементов(потенциал ионизации, сродство к электрону, атомные радиусы)
- •14) Сходство и различие химических свойств элементов главных и побочных подгрупп в связи с электронным строением атома/
- •15) Химическая связь. Виды химической связи. Энергетические и геометрические характеристики связи.
- •16) Природа химической связи. Энергетические эффекты в процессе образования химической связи.
- •17) Основные положения метода Валентных связей. Обменный и донорно-акцепторный механизма образования ковалентной связи.
- •18) Валентные возможности атомов в основном и в возбужденном состоянии.
- •20) Насыщаемость ковалентной связи. Понятие валентности.
- •21) Полярность ковалентной связи. Теория гибридизации. Виды гибридизации. Примеры.
- •22) Полярность ковалентной связи. Дипольный момент.
- •23) Достоинства и недостатки метода в.С.
- •24) Метод молекулярных орбиталей. Основные понятия.
- •25) Описать методы мо связи в биполярных и много центровых молекулах(b2 o2 BeH2 BeF2).
- •26) Ионная связь предельный случай ковалентно-полярной связи. Свойства ионной связи. Основные виды кристаллических решеток для соединения с ионной связью.
- •27) Металлическая связь. Особенности. Элементы зонной теории для объяснения особенностей металлической связи.
- •28) Межмолекулярное взаимодействие. Ориентационный, индукционный и дисперсионный эффекты.
- •Дисперсионные силы
- •29) Водородная связь.
- •30) Основные типы кристаллических решеток.
- •Простейшие кристаллические решетки. Плотнейшая кубическая упаковка. Плотнейшая гексагональная упаковка
- •31) Законы термохимии. Следствие из законов Гесса.
- •32) Понятие о внутренней энергии системы, энтальпии и энтропии.
- •33) Энергия Гиббса, её взаимодействие с энтальпией и энтропией. Изменение энергии Гиббса в самопроизвольно протекающих процессах.
- •34) Скорость химической реакции. Закон действия масс для гомогенных и гетерогенных реакций. Сущность константы скорости. Порядок и молекулярность реакции.
- •35) Факторы, влияющие на скорость химических реакций.
- •36) Влияние температуры на скорость химический реакций. Правило Вант-Гоффа. Энергия активации. Уравнение Аррениуса.
- •37) Особенности протекания гетерогенных реакций. Влияние диффузии и степень дискретности вещества.
- •38) Влияние катализатора на скорость химических реакций. Причины влияния катализатора.
- •39) Обратимые процессы. Химическое равновесие. Константа равновесия.
- •40) Влияние различных факторов на смещение равновесия. Принцип Ле Шателье.
- •41) Определение раствора. Физико-химические процессы при образование растворов. Изменения энтальпии и энтропии при растворение.
- •42) Способы выражения концентрации растворов.
- •43) Закон Рауля.
- •44) Осмос. Осматическое давление. Закон Вант-Гоффа.
- •45) Растворы электролитов. Сильные и слабые электролиты. Степень электролитической диссоциации. Изотонический коэффициент.
- •46) Теория элекролитической диссоциации. Физическая теория Аррениуса, химическая Менделеева и современный взгляд на диссоциацию.
- •47) Реакции в растворах электролитов, их направленность. Смещение ионных равновесий.
- •48) Ионное произведение воды. Водородный показатель как химическая характеристика.
- •49) Гетерогенные равновесия в растворах электролитов. Произведение растворимости.
- •50)Гидролиз солей.
- •51) Химическое равновесие на границе металл-раствор. Двойной электрический слой. Скачок потенциала. Водородный электрод сравнения. Ряд стандартных электродных потенциалов.
- •52) Зависимость электродного потенциала от природы веществ, температуры и концентрации раствора. Формула Нэриста.
- •53. 1)Гальванические элементы. 2)Процессы на электродах. 3)эдс гальванического элемента.
- •54. 1)Обратимые источники электрической энергии. 2)Кислотные и щелочные аккумуляторы.
- •55.Топливные элементы.
- •56.1)Электролиз растворов и расплавов. 2)Последовательность электродных процессов. 3)Перенапряжение и поляризация.
- •57.Взаимодействие металлов с кислотами и щелочами.
- •58. Коррозия металлов в растворах солей.
- •59. Применение электролиза в промышленности.
- •60. 1)Электрохимическая коррозия металлов. 2)Основные виды электрохимической коррозии. 3)Процессы на электродах.
- •61. Методы борьбы с коррозией.
- •Выбор одного из методов защиты основывается не только на технических соображениях, но и на экономических расчетах. Наиболее дешевым и распространенным методом являются лакокрасочные покрытия.
16) Природа химической связи. Энергетические эффекты в процессе образования химической связи.
Идея об электрической природе химической связи была высказана в 1807 году физиком Г. Дэви, который предположил, что молекулы образуются благодаря электростатическому притяжению разноименно заряженных атомов. Эта идея была развита шведским химиком И.Я. Берцелиусом, разработавший в 1812-1818 гг. электрохимическую теорию химической связи. Все атомы обладают положительными и отрицательными полюсами, причем у одних атомов преобладает полож. полюс, а у других отриц., в результате чего и образовывалась химическая связь. Однако эта теория противоречила ряду фактов(например, невозможности образования молекул из одинаковых атомов). Крупным шагом была теория химического строения Бутлерова(15 билет)
17) Основные положения метода Валентных связей. Обменный и донорно-акцепторный механизма образования ковалентной связи.
Основные положения метода ВС:
1 Ковалентная химическая связь образуется двумя электронами с противоположно направленными спинами, причем эта электронная пара принадлежит двум атомам
2 ковалентная связь тем прочнее, чем в большей степени перекрываются взаимодействующие электронные облака.
ОБМЕННЫЙ МЕХАНИЗМ - в образовании связи участвуют одноэлектронные атомные орбитали, т.е. каждый из атомов предоставляет в общее пользование по одному электрону.
ДOНОРНО-АКЦЕПТОРНЫЙ МЕХАНИЗМ - образование связи происходит за счет пары электронов атома-донора и вакантной орбитали атома-акцептора.
МВС позволяет различать три механизма образования ковалентной связи: обменный, донорно-акцепторный, дативный.
Обменный механизм. К нему относят те случаи образования химической связи, когда каждый из двух связываемых атомов выделяет для обобществления по одному электрону, как бы обмениваясь ими. Для связывания ядер двух атомов нужно, чтобы электроны находились в пространстве между ядрами. Эта область в молекуле называется областью связывания (область наиболее вероятного пребывания электронной пары в молекуле). Чтобы произошел обмен не спаренными электронами у атомов необходимо перекрывание атомных орбиталей (рис. 10,11). В этом и заключается действие обменного механизма образования ковалентной химической связи. Атомные орбитали могут перекрываться только в том случае, если они обладают одинаковыми свойствами симметрии относительно межъядерной оси (рис. 10, 11, 22).
Рис. 22. Перекрывание АО, не приводящее к образованию химической связи.
|
Донорно-акцепторный
и дативный механизмы.
Донорно-акцепторный механизм связан с передачей неподеленной пары электронов от одного атома на вакантную атомную орбиталь другого атома. Например, образование иона [BF4]-:
Вакантная р-АО в атоме бора в молекуле BF3 акцептирует пару электронов от фторид-иона (донор). В образовавшемся анионе четыре ковалентные связи В-F равноценны по длине и энергии. В исходной молекуле все три связи В-F образовались по обменному механизму.
Атомы, внешняя оболочка которых состоит только из s- или р-электронов, могут быть либо донорами, либо акцепторами неподеленной пары электронов. Атомы, у которых валентные электроны находятся и на d-АО, могут одновременно выступать и в роли доноров, и в роли акцепторов. Чтобы различить эти два механизма ввели понятия дативного механизма образования связи.