
- •1) Основные законы химии: сохранения массы и энергии, постоянство состава, эквивалентов и Авогадро.
- •2) Закон постоянства состава с современной точки зрения. Соединения постоянного и переменного состава.
- •3) Закон эквивалентов. Эквивалент элементов и соединений.
- •4) Классы неорганических соединений.
- •5) Модель строения атома Резерфорда
- •6) Теория строения атома Бора. Недостатки теории строения.
- •7) Принципы квантов механики: дискретность энергии, корпускулярно-волновой дуализм, принципы неопределенности Гейзенберга.
- •8) Уравнение Шредингера. Смысл волновой функции.
- •9) Квантовые числа. Их значение и сущность.
- •10) Электронного уравнения, подуровня, орбитали.
- •11) Правила и принципы, определяющие последовательность формирования электронных уровня и подуровня.
- •13) Периодический закон д.И.Менделеева. Периодичность в изменении различных свойств элементов(потенциал ионизации, сродство к электрону, атомные радиусы)
- •14) Сходство и различие химических свойств элементов главных и побочных подгрупп в связи с электронным строением атома/
- •15) Химическая связь. Виды химической связи. Энергетические и геометрические характеристики связи.
- •16) Природа химической связи. Энергетические эффекты в процессе образования химической связи.
- •17) Основные положения метода Валентных связей. Обменный и донорно-акцепторный механизма образования ковалентной связи.
- •18) Валентные возможности атомов в основном и в возбужденном состоянии.
- •20) Насыщаемость ковалентной связи. Понятие валентности.
- •21) Полярность ковалентной связи. Теория гибридизации. Виды гибридизации. Примеры.
- •22) Полярность ковалентной связи. Дипольный момент.
- •23) Достоинства и недостатки метода в.С.
- •24) Метод молекулярных орбиталей. Основные понятия.
- •25) Описать методы мо связи в биполярных и много центровых молекулах(b2 o2 BeH2 BeF2).
- •26) Ионная связь предельный случай ковалентно-полярной связи. Свойства ионной связи. Основные виды кристаллических решеток для соединения с ионной связью.
- •27) Металлическая связь. Особенности. Элементы зонной теории для объяснения особенностей металлической связи.
- •28) Межмолекулярное взаимодействие. Ориентационный, индукционный и дисперсионный эффекты.
- •Дисперсионные силы
- •29) Водородная связь.
- •30) Основные типы кристаллических решеток.
- •Простейшие кристаллические решетки. Плотнейшая кубическая упаковка. Плотнейшая гексагональная упаковка
- •31) Законы термохимии. Следствие из законов Гесса.
- •32) Понятие о внутренней энергии системы, энтальпии и энтропии.
- •33) Энергия Гиббса, её взаимодействие с энтальпией и энтропией. Изменение энергии Гиббса в самопроизвольно протекающих процессах.
- •34) Скорость химической реакции. Закон действия масс для гомогенных и гетерогенных реакций. Сущность константы скорости. Порядок и молекулярность реакции.
- •35) Факторы, влияющие на скорость химических реакций.
- •36) Влияние температуры на скорость химический реакций. Правило Вант-Гоффа. Энергия активации. Уравнение Аррениуса.
- •37) Особенности протекания гетерогенных реакций. Влияние диффузии и степень дискретности вещества.
- •38) Влияние катализатора на скорость химических реакций. Причины влияния катализатора.
- •39) Обратимые процессы. Химическое равновесие. Константа равновесия.
- •40) Влияние различных факторов на смещение равновесия. Принцип Ле Шателье.
- •41) Определение раствора. Физико-химические процессы при образование растворов. Изменения энтальпии и энтропии при растворение.
- •42) Способы выражения концентрации растворов.
- •43) Закон Рауля.
- •44) Осмос. Осматическое давление. Закон Вант-Гоффа.
- •45) Растворы электролитов. Сильные и слабые электролиты. Степень электролитической диссоциации. Изотонический коэффициент.
- •46) Теория элекролитической диссоциации. Физическая теория Аррениуса, химическая Менделеева и современный взгляд на диссоциацию.
- •47) Реакции в растворах электролитов, их направленность. Смещение ионных равновесий.
- •48) Ионное произведение воды. Водородный показатель как химическая характеристика.
- •49) Гетерогенные равновесия в растворах электролитов. Произведение растворимости.
- •50)Гидролиз солей.
- •51) Химическое равновесие на границе металл-раствор. Двойной электрический слой. Скачок потенциала. Водородный электрод сравнения. Ряд стандартных электродных потенциалов.
- •52) Зависимость электродного потенциала от природы веществ, температуры и концентрации раствора. Формула Нэриста.
- •53. 1)Гальванические элементы. 2)Процессы на электродах. 3)эдс гальванического элемента.
- •54. 1)Обратимые источники электрической энергии. 2)Кислотные и щелочные аккумуляторы.
- •55.Топливные элементы.
- •56.1)Электролиз растворов и расплавов. 2)Последовательность электродных процессов. 3)Перенапряжение и поляризация.
- •57.Взаимодействие металлов с кислотами и щелочами.
- •58. Коррозия металлов в растворах солей.
- •59. Применение электролиза в промышленности.
- •60. 1)Электрохимическая коррозия металлов. 2)Основные виды электрохимической коррозии. 3)Процессы на электродах.
- •61. Методы борьбы с коррозией.
- •Выбор одного из методов защиты основывается не только на технических соображениях, но и на экономических расчетах. Наиболее дешевым и распространенным методом являются лакокрасочные покрытия.
28) Межмолекулярное взаимодействие. Ориентационный, индукционный и дисперсионный эффекты.
Межмолекулярное взаимодействие — взаимодействие между электрически нейтральными молекулами или атомами.
Ориентационные силы действуют между полярными молекулами, то есть обладающими дипольными электрическими моментами. Сила притяжения между двумя полярными молекулами максимальна в том случае, когда их дипольные моменты располагаются вдоль одной линии (см. рисунок). Эта сила возникает благодаря тому, что расстояния между разноимёнными зарядами немного меньше, чем между одноимёнными. В результате притяжение диполей превосходит их отталкивание. Взаимодействие диполей зависит от их взаимной ориентации, и поэтому силы дипольного взаимодействия называются ориентационными. Хаотическое тепловое движение непрерывно меняет ориентацию полярных молекул, но, как показывает расчёт, среднее по всевозможным ориентациям значение силы имеет определённую величину, не равную нулю. Потенциальная энергия ориентационного межмолекулярного взаимодействия:
где p1,p2 — дипольные моменты взаимодействующих молекул.
Соответственно, сила взаимодействия:
For˜r − 7.
Сила For убывает с расстоянием значительно быстрей, чем кулоновская сила взаимодействия заряженных тел (Fq˜r − 2).
Индукционные (или поляризационные) силы действуют между полярной и неполярной молекулами. Полярная молекула создаёт электрическое поле, которое поляризует молекулу с электрическими зарядами, равномерно распределёнными по объёму. Положительные заряды смещаются по направлению электрического поля (то есть от положительного полюса), а отрицательные — против (к положительному полюсу). В результате у неполярной молекулы индуцируется дипольный момент.
Энергия межмолекулярного взаимодействия в этом случае пропорциональна дипольному моменту p1 полярной молекулы и поляризуемости a2, характеризующей способность другой молекулы поляризоваться:
Эта энергия называется индукционной, так как она появляется благодаря поляризации молекул, вызванной электростатической индукцией. Индукционные силы (Find˜r − 7) действуют также и между полярными молекулами.
Дисперсионные силы
Между неполярными молекулами действует дисперсионное межмолекулярное взаимодействие. Природа этого взаимодействия была выяснена полностью только после создания квантовой механики. В атомах и молекулах электроны сложным образом движутся вокруг ядер. В среднем по времени дипольные моменты неполярных молекул оказываются равными нулю. Но в каждый момент электроны занимают какое-то положение. Поэтому мгновенное значение дипольного момента (например, у атома водорода) отлично от нуля. Мгновенный диполь создаёт электрическое поле, поляризующее соседние молекулы. В результате возникает взаимодействие мгновенных диполей. Энергия взаимодействия между неполярными молекулами есть средний результат взаимодействия всевозможных мгновенных диполей с дипольными моментами, которые они наводят в соседних молекулах благодаря индукции. Потенциальная энергия дисперсионного межмолекулярного взаимодействия:
где a1,a2 — поляризуемости взаимодействующих молекул.
а дисперсионная сила:
Fdisp˜r − 7.
Межмолекулярное взаимодействие данного типа называется дисперсионным потому, что дисперсия света в веществе определяется теми же свойствами молекул, что и это взаимодействие. Дисперсионные силы действуют между всеми атомами и молекулами, так как механизм их появления не зависит от того, есть ли у молекул (атомов) постоянные дипольные моменты или нет. Обычно эти силы превосходят по величине как ориентационные, так и индукционные. Только при взаимодействии молекул с большими дипольными моментами, например молекул воды, For > Fdisp (в 3 раза для молекул воды). При взаимодействии же таких полярных молекул, как CO, HI, HBr и других, дисперсионные силы в десятки и сотни раз превосходят все остальные.
Очень существенно, что все три типа межмолекулярного взаимодействия одинаковым образом убывают с расстоянием:
U = Uor + Uind + Udisp˜r − 6