
- •1) Основные законы химии: сохранения массы и энергии, постоянство состава, эквивалентов и Авогадро.
- •2) Закон постоянства состава с современной точки зрения. Соединения постоянного и переменного состава.
- •3) Закон эквивалентов. Эквивалент элементов и соединений.
- •4) Классы неорганических соединений.
- •5) Модель строения атома Резерфорда
- •6) Теория строения атома Бора. Недостатки теории строения.
- •7) Принципы квантов механики: дискретность энергии, корпускулярно-волновой дуализм, принципы неопределенности Гейзенберга.
- •8) Уравнение Шредингера. Смысл волновой функции.
- •9) Квантовые числа. Их значение и сущность.
- •10) Электронного уравнения, подуровня, орбитали.
- •11) Правила и принципы, определяющие последовательность формирования электронных уровня и подуровня.
- •13) Периодический закон д.И.Менделеева. Периодичность в изменении различных свойств элементов(потенциал ионизации, сродство к электрону, атомные радиусы)
- •14) Сходство и различие химических свойств элементов главных и побочных подгрупп в связи с электронным строением атома/
- •15) Химическая связь. Виды химической связи. Энергетические и геометрические характеристики связи.
- •16) Природа химической связи. Энергетические эффекты в процессе образования химической связи.
- •17) Основные положения метода Валентных связей. Обменный и донорно-акцепторный механизма образования ковалентной связи.
- •18) Валентные возможности атомов в основном и в возбужденном состоянии.
- •20) Насыщаемость ковалентной связи. Понятие валентности.
- •21) Полярность ковалентной связи. Теория гибридизации. Виды гибридизации. Примеры.
- •22) Полярность ковалентной связи. Дипольный момент.
- •23) Достоинства и недостатки метода в.С.
- •24) Метод молекулярных орбиталей. Основные понятия.
- •25) Описать методы мо связи в биполярных и много центровых молекулах(b2 o2 BeH2 BeF2).
- •26) Ионная связь предельный случай ковалентно-полярной связи. Свойства ионной связи. Основные виды кристаллических решеток для соединения с ионной связью.
- •27) Металлическая связь. Особенности. Элементы зонной теории для объяснения особенностей металлической связи.
- •28) Межмолекулярное взаимодействие. Ориентационный, индукционный и дисперсионный эффекты.
- •Дисперсионные силы
- •29) Водородная связь.
- •30) Основные типы кристаллических решеток.
- •Простейшие кристаллические решетки. Плотнейшая кубическая упаковка. Плотнейшая гексагональная упаковка
- •31) Законы термохимии. Следствие из законов Гесса.
- •32) Понятие о внутренней энергии системы, энтальпии и энтропии.
- •33) Энергия Гиббса, её взаимодействие с энтальпией и энтропией. Изменение энергии Гиббса в самопроизвольно протекающих процессах.
- •34) Скорость химической реакции. Закон действия масс для гомогенных и гетерогенных реакций. Сущность константы скорости. Порядок и молекулярность реакции.
- •35) Факторы, влияющие на скорость химических реакций.
- •36) Влияние температуры на скорость химический реакций. Правило Вант-Гоффа. Энергия активации. Уравнение Аррениуса.
- •37) Особенности протекания гетерогенных реакций. Влияние диффузии и степень дискретности вещества.
- •38) Влияние катализатора на скорость химических реакций. Причины влияния катализатора.
- •39) Обратимые процессы. Химическое равновесие. Константа равновесия.
- •40) Влияние различных факторов на смещение равновесия. Принцип Ле Шателье.
- •41) Определение раствора. Физико-химические процессы при образование растворов. Изменения энтальпии и энтропии при растворение.
- •42) Способы выражения концентрации растворов.
- •43) Закон Рауля.
- •44) Осмос. Осматическое давление. Закон Вант-Гоффа.
- •45) Растворы электролитов. Сильные и слабые электролиты. Степень электролитической диссоциации. Изотонический коэффициент.
- •46) Теория элекролитической диссоциации. Физическая теория Аррениуса, химическая Менделеева и современный взгляд на диссоциацию.
- •47) Реакции в растворах электролитов, их направленность. Смещение ионных равновесий.
- •48) Ионное произведение воды. Водородный показатель как химическая характеристика.
- •49) Гетерогенные равновесия в растворах электролитов. Произведение растворимости.
- •50)Гидролиз солей.
- •51) Химическое равновесие на границе металл-раствор. Двойной электрический слой. Скачок потенциала. Водородный электрод сравнения. Ряд стандартных электродных потенциалов.
- •52) Зависимость электродного потенциала от природы веществ, температуры и концентрации раствора. Формула Нэриста.
- •53. 1)Гальванические элементы. 2)Процессы на электродах. 3)эдс гальванического элемента.
- •54. 1)Обратимые источники электрической энергии. 2)Кислотные и щелочные аккумуляторы.
- •55.Топливные элементы.
- •56.1)Электролиз растворов и расплавов. 2)Последовательность электродных процессов. 3)Перенапряжение и поляризация.
- •57.Взаимодействие металлов с кислотами и щелочами.
- •58. Коррозия металлов в растворах солей.
- •59. Применение электролиза в промышленности.
- •60. 1)Электрохимическая коррозия металлов. 2)Основные виды электрохимической коррозии. 3)Процессы на электродах.
- •61. Методы борьбы с коррозией.
- •Выбор одного из методов защиты основывается не только на технических соображениях, но и на экономических расчетах. Наиболее дешевым и распространенным методом являются лакокрасочные покрытия.
1) Основные законы химии: сохранения массы и энергии, постоянство состава, эквивалентов и Авогадро.
Сохранение массы-Михаил Васильевич Ломоносов (в 1748г): Масса веществ, вступающих в реакцию, равна массе веществ, образующихся в результате реакции.Антуан Лоран Лавуазье(в 1789): показал, что при хим. реакции сохраняется не только общая масса веществ но и каждого в отдельности.В 1905 году А.Эйнштейн:E=mc2.
Закон постоянства состава
Впервые сформулировал Ж.Пруст (1808 г).
Все индивидуальные химические вещества имеют постоянный качественный и количественный состав и определенное химическое строение, независимо от способа получения.
Из закона постоянства состава следует, что при образовании сложного вещества элементы соединяются друг с другом в определенных массовых соотношениях.
Массовая доля элемента w(Э) показывает, какую часть составляет масса данного элемента от всей массы вещества: где n - число атомов; Ar(Э) - относительная атомная масса элемента; Mr - относительная молекулярная масса вещества.
w(Э) = (n•Ar(Э)) / Mr
Зная количественный элементный состав соединения можно установить его простейшую молекулярную формулу:
1. Обозначают формулу соединения Ax By Cz 2. Рассчитывают отношение X : Y : Z через массовые доли элементов:
w(A) = (х•Ar(А)) / Mr(AxByCz)
w(B) = (y•Ar(B)) / Mr(AxByCz)
w(C) = (z•Ar(C)) / Mr(AxByCz)
X = (w(A)•Mr) / Ar(А) Y = (w(B) •Mr) / Ar(B)
Z = (w(C) •Mr) / Ar(C)
x : y : z = (w(A) / Ar(А)) : (w(B) / Ar(B)) : (w(C) / Ar(C))
3. Полученные цифры делят на наименьшее для получения целых чисел X, Y, Z.
4. Записывают формулу соединения.
Закон постоянства состава: соотношения между массами элементов, входящих в состав данного соединения, постоянны и не зависят от способа получения этого соединения. Дальтон(открыл закон парциальных газов): Закон кратных отношений: Если 2 элемента образуют друг с другом несколько химических соединений, то массы одного из элементов, приходящиеся в этих соединениях на одну и ту же массу другого относятся между собой как небольшие целые числа. Гей-Люссак Закон простых объемных отношений: Объемы вступающих в реакцию газов относятся друг к другу и к объемам образующихся газообразных продуктов реакции как небольшие целые числа. Авогадро в 1811 В равных объемах при одной и той же температуре и при одинаковом давлении, содержится одно и тоже число молекул.
2) Закон постоянства состава с современной точки зрения. Соединения постоянного и переменного состава.
Состав вещества не зависит от способа получения и является постоянным. Справедливо для молекул. Для твердого тела зависит от способа получения. В начале ХХ века Н.С.Курнаков (основатель физико-химического анализа) открыл соединения переменного состава. Ti + O2 = TiO1.8-2.2.
Дальтониды — научный термин, которым обычно обозначают вещества постоянного качественного и количественного состава, который не зависит от способа получения. Название происходит от имени английского учёного Джона Дальтона.
Исторически это понятие связано с законом постоянства состава вещества. Постоянство состава естественно для молекулярных веществ, поскольку молекулы состоят из вполне конкретных атомов, определённого вида и определённой массы. Для немолекулярных веществ, в частности, для кристаллов с дефектами, могут быть большие отклонения от идеального соотношения между числом атомов (стехиометрии). Поэтому в узком смысле (фактически устаревшем) к дальтонидам относят так называемые стехиометрические соединения, у которых вообще нет области гомогенности (области переменного состава). В широком смысле к дальтонидам также относят соединения, у которых область гомогенности имеет конечную (ненулевую) ширину, но содержит также и стехиометрический состав.
Современный взгляд на вопрос включает также наличие полной информации о структуре — в стехиометрическом соединении (истинном дальтониде) заселённости кристаллографических позиций равны единице, то есть, дефекты в макроскопических количествах отсутствуют. По одному только составу нельзя строго отнести вещество к классу дальтонидов. Например, область гомогенности оксида титана TiO включает стехиометрический состав (где соотношение компонентов точно 1:1). Однако ни при этом составе, ни при каком-либо другом не достигаются идеальные (единичные) заселённости позиций титана и кислорода. То есть, данное соединение не является дальтонидом.
Бертоллиды (термин в память К.Л. Бертолле) — соединения переменного состава, не подчиняющиеся законам постоянных и кратных отношений. Это нестехиометрические бинарные соединения переменного состава, зависящего от способа получения. Многочисленные случаи образования бертоллидов открыты в металлических системах, а также среди оксидов, сульфидов, карбидов, гидридов и др. Данный термин был введен Н.С.Курнаковым в 1912—14.
Бертоллидами исторически считали соединения с ненулевой областью гомогенности, но в современном смысле это соединения, область гомогенности которых вообще не включает стехиометрический состав. Причём стехиометричность трактуется не по составу, а с учётом структурных данных (концентрации дефектов, заселённости кристаллографических позиций). Естественно, в такой класс попадают, в основном, только немолекулярные соединения. Внутри областигомогенности бертоллида нет состава с макроскопически идеальными (единичными) заселённостями позиций, в отличие от дальтонидов.