
- •Кедергідегі синусоидалды тоқ
- •7) Толық тізбек үшін Ом заңы. Беттесу әдісі.
- •8) Төртұштықтардың а, в, с, d есептеуіштерін (коэффициентін) анықтау. Төртұштықтардың орынбасу сұлбасы (схема).
- •10. Контулық тоқтар және эквивалентті генератор әдістері. (тұрақты тоқ үшін).Контурлық тоқтар әдісі
- •11. Rl және rc элементтерін тізбектей қосу
- •13. Максималды қуаттың берілу шарты (тұрақты тоқ үшін)
- •14. Төртұштықтардың түрлерінің теңдеулері
- •15. Активті төртұштықтың эквивалентті сұлбасы.
- •16. Кернеу резонансы. Кернеу резонансының қисықтары және жиіліктік сипаттамалары.
- •17. Периодикалық синусоидалды емес қисықтың сипаттамалық формасы және еселеуіштері.
- •18. Электр тізбегінің сүзгілері. Сүзгі ұғымы.
- •19. Контурлық тоқтар әдісі. (Тұрақты тоқ үшін)
- •20. Кернеу резонансы. Кернеу резонансының қисықтары және жиіліктік сипаттамалары.
- •21. Электр сұлбалары және электр тізбектеріндегі элементтер, анықтамалар.
- •1.2 Резистивті элемент (резистор)
- •1.3 Индуктивті элемент (орама индуктивтігі)
- •1.4 Сыйымдылықты элемент (конденсатор)
- •22. Тоқ резонансы. Тоқ резонансының қисықтары және жиіліктік сипаттамалары.
- •23. Кешенді түрдегі Ом заңы
- •24. Периодикалық синусоидалды емес эқк, кернеу және тоқтардың орташа, әсерлік және максималды мәндері.
- •25. Электр тізбегінің сүзгілері.
- •26. Эқк бар сұлбасы эквивалентті тоқ көзі бар сұлбаға түрлендіру.
- •27. Индуктивті байланыстың айырығы (развязка).
- •29. Өзара индуктивті байланысқан элементтерді тізбектей және параллель қосу.
- •30. Кешенді түрдегі Ом заңы
- •33. Төртбұрыштылар және олардың негізгі теңдеулері
- •36.R,l,c тізбектерін тізбекше қосу. Кедергінің, индуктивтіліктің және сыйымдылықтың тізбектей қосылуы
- •37) Түйіндік потенциалдар және эквивалентті генератор әдістері. (тұрақты тоқ тізбегі үшін)
- •38. Екі түіндік потенциалдар әдісі. (тұрақты тоқ тізбегі үшін)
- •39. Кирхгофтың I, II заңдары (тұрақты тоқ үшін)
- •40. Сүзгілер. Жолақты сүзгі. Олардың қасиеттері , .
- •41. Кешенді түрдегі контурлық тоқтар әдісі.
- •42. Векторлы-топографиялық сызба.
- •43. Комплекс түрдегі түйіндік потенциалдар әдісі.
- •43. Комплекс түрдегі түйіндік потенциалдар әдісі.
- •44. Синусоидалды функцияларды айнымалы вектордың проекциялар түрінде көрсету.
- •45. Өзара индуктивті байланысқан элементтерді тізбектей қосу.
- •46. Екі түйіндік потенциалдар әдісі (тұрақты тоқ тізбегі үшін)
- •47. Комплекс түрдегі Кирхгоф және Ом заңдары.
- •1 Кирхгоф заңдары
- •48. Эквивалентті генератор әдісі (тұрақты тоқ үшін)
- •49. Сүзгілер, тжс – лер және олардың қасиеттері. , .
- •50. Теңгеру (компенсация) теоремасы.
- •51. Комплекс түрдегі электр қуаттары.
- •52. Комплекс түрдегі Ом және Кирхгоф заңдары.
- •53. Тоқ резонансы. Тоқ резонансының қисықтары және сипаттамалары.
- •54. Төртұштылар және олардың негізгі теңдеулері.
- •55.Rl және rc элементтерін тізбектей қосу.
- •56. Түйіндік потенциалдар әдісі. (Тұрақты тоқ үшін)
- •57. Төртұштының беріліс еселеуіштері және кедергісі.
- •58. Өзара индуктивті байланысқан электр тізбектері.
- •59. Төртұштының орынбасу сұлбасы. (схемасы)
- •60. Активті төртұштының эквивалентті сұлбасы. (схемасы)
- •62.Теңгеру теоремасы
- •63. Сүзгілер. Шекаралық сүзгі. Электрлік сүзгі
- •62. Теңгеру (компенсация) теоремасы.
- •67. Сүзгілер, жжс. Олардың қасиеттері. , .
- •68. Сүзгілер, тжс. Олардың қасиеттері , .
- •69. Синусоидалды емес тоқ тізбегінің қуаттары.
- •70. Кешенді түрдегі Ом заңы
- •71. Кирхгофтың I, II заңдары (тұрақты тоқ үшін).
- •72.Тізбектердегі синусоидальды емес периодты эқк, кернеулерді, тоқтарды есептеу
- •12.1 Сурет 12.2 Сурет
- •1 2.5 Сурет
- •74. Беттесу әдісі
- •75. Кедергінің, индуктивтіліктің және сыйымдылықтың тізбектей қосылуы
- •76. Активті төртұштының теңдеуі
- •14.1 Сурет
- •14.2 Төртұштықтардың теңдеулері
- •77. Төртұштының гипербалалық функциясының теңдеуі
- •15.4 Сурет
- •79. Индуктивті байланысќан элементтері бар тізбектер.
- •81. Сызықты электр тізбегінің қасиеттері;
- •82. Қуаттар тепе-теңдігінің теңдеуі.
- •88. Синусоидалы ток тізбегінің негізгі элементтері және олардың кедергілері
19. Контурлық тоқтар әдісі. (Тұрақты тоқ үшін)
Бұл әдіс тармақтан өтетін тізбектегі кез келген тармақтағы тоқты контурлық тоқтардың алгебралық қосындысы түрінде жазуға болатындығына негізделген. Осы әдісті қолданған кезде контурлық тоқтарды таңдайды және белгілейді (тізбектің кез келген тармағы арқылы кемінде бір таңдап алынған контурлық тоқ өту керек). Контурлық тоқтардың жалпы саны -ге тең. Контурлық тоқтардың -ның әр біреуі бір тоқ көзінен өтуі ұсынылады. Осы контурлық тоқтарды сәйкес тоқ көздерімен сәйкес келеді деп санауға болады және олар әдетте есептің шартында беріледі. Бұлар үшін теңдеулер құрастырылмайды, бірақ басқа контурларға теңдеулер құраған кезде ескеріледі. Қалған контурлық тоқтар тоқ көзі жоқ, тармақтардан өтетіндерін таңдайды. Кирхгофтың екінші заңына байланысты соңғы контурлық тоқтарды анықтаған кезде К теңдеулері
R11I11 + R12Ι22 + … +R1kIkk+ … + JnRn = Е11,
R21I11 + R22Ι22 + … +R2kIkk+ … + JnRn = Е22, (3.4)
Rk1I11 + Rk2Ι22 + … +RkkIkk+ … + JnRn = Еkk
түрінде жазылады. Мұндағы Rnn- n контурының өзінің кедергісі (n контурына кіретін барлық тармақтардың кедергілерінің қосындысы); Rn1- Rn n және L контурларының жалпы кедергісі, Rnl = Rln. n және L үшін жалпы тармақтағы контурлық тоқтардың бағыты сәйкес келсе, онда Rn1 оң, ал егер керісінше болса Rn1 теріс болады; Еnn –n контурын құрайтын тармақтарға қосылған ЭҚК-нің алгебралық қосындысы; Rn-тармақтағы n контуры мен тоқ көзі бар контурдың жалпы кедергісі.
20. Кернеу резонансы. Кернеу резонансының қисықтары және жиіліктік сипаттамалары.
Индуктивтік орауыштары және конденсаторлары бар тізбектерде кіріс кедергісі немесе кіріс өткізгіштігі нөлге тең болғандағы ережені резонанс деп атайды.
11.1 Сурет
11.1 суреттегі тізбек үшін
мұндағы
(11.1)
(11.2)
және шамалар арақатынасына тәуелділігіне байланысты үш жағдай болуы мүмкін.
1. Тізбекте индуктивтіліктің басым болуы, , демек, .
Бұл жүйеге 11.2,а – суретте векторлық сызбаға сәйкес келеді.
11.2 Сурет
2. Тізбекте сыйымдылықтың басым болуы, , онда, . Бұл жағдай 11.2,б – суретте векторлық сызбада көрсетілген.
3. - Кернеу резонансының оқиғасы (11.2,с - сурет).
Кернеу резонансының шарты
(11.3)
(11.1) және (11.2) шығады ; .
Кернеу резонансы кезінде тізбектегі тоқ өте үлкен мәнге жетеді . Сонымен бірге индуктивтіктегі және сыйымдылықтағы кернеулер резонанс кезде тізбектің қысқыштарындағы кернеуден едәуір үлкен болады. Резонанс-тың физикалық мәні индуктивтілік катушканың магнит ағыны энергиясы мен конденсатордың электр өрісінің периодикалық ауыстыруында болады және де өрістің энергиясының мәні тұрақты болып қалады.
(11.3) теңдіктің талдауы көрсеткендей, L және C тағы да жиілік к-көрсеткіштерін өзгерткенде резонанс жүйесіне жетуге болады. (11.3) теңдігі-нің негізінде резонанстық жүйені жазуға болады
(11.4)
Тізбектей қосылған тербелмелі контурдың жиіліктік сипаттамалары
Контурдағы реактивті кедергінің жиіліктен тәуелділігі (11.3 - сурет), мұндағы , .
11.3 Сурет 11.4 Сурет
Контурдағы толық кедергінің жиіліктен тәуелділігі , (11.4 - сурет). Резонансқа дейін контурдағы сипаттамалық кедергі активті – индуктивті, резонанс кезінде активті, резонанстан кейін активті – индуктивті болады.
– тәуелділігі амплитуттік жиілік сипаттамасы (АЖС), (11.5 - сурет).
, , , – тәуелділіктер (11.6 - сурет).
11.5 Сурет 11.6 Сурет
– тәуелділік фаза жиілігінің сипаттамасы (ФЖС), , (11.7 - сурет).
11.7 Сурет