
- •1. Предмет аэрогидромеханики, ее структура и методы. Теоретические модели жидкости и газа в аэрогидромеханике,
- •Жидкость и газ с точки зрения молекулярно-кинетической теории. Принципиальные (основные) в аэрогидромеханике параметры состояния жидкости и газа.
- •Плотность жидкости. Силы и напряжения, действующие в жидкости.
- •Вязкость. Сдвиговая вязкость с точки зрения молекулярно-кинетической теории. Свойство прилипания жидкости. Закон вязкого трения Ньютона. Зависимость вязкости от температуры и давления.
- •Ньютоновские и неньютоновские жидкости и их законы вязкого трения.
- •Изолированная и замкнутая система. Химическое, динамическое, тепловое и термодинамическое равновесие изолированной системы. Время релаксации. Равновесный процесс.
- •7 Результаты смешивания веществ. Понятия химического соединения, раствора, дисперсной системы, механической смеси. Растворимость и ее мерз.
- •Напряженное состояние покоящейся жидкости.
- •Гидростатическое давление и его виды. Поле давления. Поверхность равного давления и плоскость уровня.
- •Сжимаемость жидкостей и газов. Коэффициент объемного сжатия и модуль объемной' упругости. Закон Гука. Закон Бойля-Мариогга. Бароклннная и баротропная жидкость.
- •Тепловое расширение жидкостей и газов. Коэффициент теплового расширения. Закон Гей-Люссака. Абсолютный ноль температуры.
- •Уравнение Эйлера равновесия жидкости.
- •Барометрическая формула. Основной закон гидростатики для несжимаемой жидкости: его энергетическая и геометрическая интерпретация.
- •Сила давления жидкости на плоскую стенку. Центр давления. Гидростатический парадокс. Сила давления жидкости на плоскую стенку
- •17.Сила давления жидкости на криволинейную (цилиндрическую) стенку. Закон Архимеда. Сила давления жидкости на криволинейные стенки. Плавание тел
- •Теорема Коши-Гельмгольца.
- •Метод Лагранжа и метод Эйлера изучения движения жидкости. Траектория и линия тока. Ускорение жидкой частицы в методе Лагранжа и методе Эйлера.
- •Классификация течений (потоков) жидкости. Принцип обратимости движения.
- •22. Дивергенция вектора а (вектора скорости V и вектора вихря rot V). Соленоидальное поле вектора а (вектора скорости V и вектора вихря rot V ) и его свойства.
- •25. Две задачи вихревого течения. Формула Био-Савара.
- •Уравнение неразрывности в дифференциальной и интегральной форме. Его физический смысл. Уравнение расхода.
- •35. Кавитация. Кавитация
- •43. Парадокс д'Аламбера-Эйлера. Причины возникновения силы сопротивления.
- •44. Теорема Жуковского о подъемной силе. Эффект Магнуса. Возникновение подъемной силы на крыле.
- •47. Закон Стокса. Давление в движущейся вязкой жидкости,
- •48. Уравнение движения жидкости в напряжениях. Уравнение Навье-Стокса. Система уравнений для определения состояния движущейся вязкой жидкости.
- •49. Физическое подобие как обобщение понятий геометрического подобия и подобия во времени. Связь между масштабами физических величин в подобных явлениях. Необходимые условия динамического подобия.
- •50. Критерии подобия при моделировании движения в вязкой жидкости. Их совместимость и возможность реализации. Автомодельность подобия. Основы гидродинамического подобия
- •Основные характеристики истечения жидкости через отверстия и насадки (формула Торичелли; виды истечения; коэффициенты сжатия, скорости и расхода; типы сжатия струи).
- •Классификация отверстий и их практическое применение
- •Виды насадков и их применение. Истечение жидкости через насадки
- •Истечение жидкости из отверстий и насадков
- •7.1. Истечение через малое отверстие в тонкой стенке при постоянном напоре
- •7.2. Истечение через насадки
- •Основные понятия, определения и теоремы, которыми нужно владеть на экзамене
Классификация течений (потоков) жидкости. Принцип обратимости движения.
Течение жидкости может быть установившимся (стационарным) и неустановившимся (нестационарным).
Установившимся называется течение, неизменное во времени, при котором давление и скорость являются только функциями координат, но не зависят от времени. Давление и скорость могут изменяться при перемещении частицы жидкости, но в данной неподвижной относительно русла точке давление и скорость во времени не изменяются:
В частном случае стационарное течение жидкости может быть равномерным, когда скорость каждой частицы не изменяется при изменении ее координат, и поле скоростей остается неизменным вдоль потока.
Неустановившимся называется течение жидкости, все характеристики которого (или некоторые из них) изменяются во времени в точках рассматриваемого пространства:
Исследовать установившиеся течения значительно проще, чем неустановившиеся. В дальнейшем мы будем чаще всего вести речь об установившихся течениях. Траектории частиц при стационарном течении неизменны во времени. При нестационарном течении траектории частиц, проходящих через данную точку пространства в различные моменты времени, могут иметь различную форму. Поэтому для рассмотрения картины течения вводится понятие линии тока.
Установившимся стационарным движением жидкости называется такое движение, при котором в каждой данной точке основные элементы движения жидкости – скорость движения и и гидродинамическое давление р не изменяются с течением времени, т.е. зависят только от координат точки. Аналитически это условие запишется так:
и
.
Неустановившимся
(нестационарным) движением жидкости
называется такое
движение, при котором в каждой данной
точке основные элементы движения
жидкости –
скорость
движения и
и гидродинамическое давление р
– постоянно
изменяются, т.е. зависят не только от
положения точки в пространстве, но и от
времени
.
Аналитически это условие запишется
так:
и
.
Примером установившегося движения может быть: движение жидкости в канале, в реке при неизменных глубинах, истечение жидкости из резервуара при постоянном уровне жидкости в нем и др. Неустановившееся движение – это движение жидкости в канале или реке при переменном уровне или при опорожнении резервуара, когда уровень жидкости в нем непрерывно изменяется.
В дальнейшем будет изучаться главным образом установившееся движение жидкости и в отдельных случаях будут разбираться примеры неустановившегося движения.
Установившееся движение в свою очередь подразделяется на равномерное и неравномерное.
Равномерным
называется
такое установившееся движение, при
котором живые
сечения вдоль потока не изменяются: в
этом случае
;
средние скорости
по длине потока также не изменяются,
т.е.
.
Примером равномерного движения является:
движение жидкости в цилиндрической
трубе,
в канале постоянного сечения при
одинаковых глубинах.
Установившееся движение называется неравномерным, когда распределение скоростей в различных поперечных сечениях неодинаково; при этом средняя скорость и площадь поперечного сечения потока могут быть и достоянными вдоль потока. Примером неравномерного движения может быть движение жидкости в конической трубе или в речном русле переменной ширины.
Напорным называется движение жидкости, при котором поток полностью заключен в твердые стенки и не имеет свободной поверхности. Напорное движение происходит вследствие разности давлений и под действием силы тяжести. Примером напорного движения является движение жидкости в замкнутых трубопроводах (например, в водопроводных трубах).
Безнапорным называется движение жидкости, при котором поток имеет свободную поверхность. Примером безнапорного движения может быть: движение жидкости в реках, каналах, канализационных и дренажных трубах. Безнапорное движение происходит под действием силы тяжести и за счет начальной скорости. Обычно на поверхности безнапорного потока давление атмосферное.
Векторная линия (линия тока, вихревая линия) и ее уравнение. Векторная трубка (трубка тока, вихревая трубка). Поток вектора через незамкнутую и замкнутую поверхность (объемный расход, интенсивность вихревой трубки). Дивергенция вектора а (вектора скорости v и вектора вихря rot v ).
Трубка тока. Струйка тока. Поток жидкости, живое сечение, поперечное сечение, смоченный периметр. Гидравлический диаметр.
Поверхность, образованная линиями тока и проходящая ч/з точки замкнутого контура, называется трубка тока. Линия тока – в каждой точке вектор тока касательный. ( Если периметр охватывает малую площадку, трубку называют элементарной). Жидкость внутри – элементарная струйка или струйка. В пределах поперечного сечения элементарной струйки скорость течения и др. параметры принимаются постоянными. Поток жидкости – совокупность элементарных струек. Струйки в потоке плотно прилегают друг к другу.
Живым сечением называется сечение потока. Каждая элементарная площадка которого нормальна к соответствующему вектору скорости. Если линии тока параллельны, то живое сечение плоское.
Гидравлический
радиус
,
-
смоченный периметр, длина линии, по
которой живое сечение потока соприкасается
с огранич. поверхностями.
Гидравлический
диаметр
.
Поперечным сечением потока называется сечение площадью S, перпендикулярное оси.
Объемным расходом
жидкости Q
называется объем жидкости, протекающий
через данную поверхность в секунду:
.
Поток жидкости - конечный движущийся объем жидкости, состоящий из бесконечно большого числа элементарных струек.
Рис. 16. Линия тока
Линия тока (Рис. 16) – это кривая, в каждой точке которой вектор скорости в данный момент времени направлен по касательной.
Рис. 17. Трубка тока
Если в движущейся жидкости взять бесконечно малый замкнутый контур и через все его точки провести линии тока, то образуется трубчатая поверхность, называемая трубкой тока (Рис. 17). Часть потока, заключенная внутри трубки тока, называется элементарной струйкой.
В любой точке трубки тока скорости частиц жидкости направлены по касательной, нормальная к этой поверхности составляющая скорости отсутствует, следовательно, при установившемся движении ни одна частица жидкости ни в одной точке не может проникнуть внутрь струйки или выйти наружу. Таким образом, трубка тока является как бы непроницаемой стенкой, а элементарная струйка – это самостоятельный элементарный поток.
Элементарная струйка характеризует состояние движения жидкости в данный момент времени t. При установившемся движении элементарная струйка имеет следующие свойства:
1. форма и положение элементарной струйки с течением времени остаются неизменными, так как не изменяются линии тока;
2. приток жидкости в элементарную струйку и отток из нее через боковую поверхность невозможен, так как по контуру элементарной струйки скорости направлены по касательной;
3.
скорость
и гидродинамическое давление во всех
точках поперечного лечения
элементарной струйки можно считать
одинаковым ввиду малости
площади
.
Поток. Совокупность элементарных струек движущейся жидкости, проходящих через площадку достаточно больших размеров, называется потоком жидкости. Поток ограничен твердыми поверхностями, по которым происходит движение жидкости (труба), и атмосферой (река, лоток, канал и т.п.).
Смоченным
периметром живого сечения потока П
называется
часть контура живого сечения потока,
которая ограничена твёрдой средой. (На
рисунке смоченный периметр выделен
жирной линией).
Расходом называется количество жидкости, протекающее через живое сечение потока (струйки) в единицу времени. Количество жидкости можно задать объемом, массой или весом. Соответственно и расходы бывают объемный Q, массовый Qm и весовой QG.
Для элементарной струйки, имеющей бесконечно малые площади живых сечений, можно считать скорость жидкости в любой точке сечения одинаковой. Тогда
dQ = V dS; dQm= dQ = V dS; dQG= g dQm= gV dS,
где dS – площадь живого сечения струйки.
Для потока конечных размеров скорость в различных точках сечения будет различной, поэтому расход следует определять как сумму элементарных расходов струек
Но это чисто теоретическая формула, воспользоваться ей для определения расхода проблематично. Обычно вводят в рассмотрение среднюю по сечению скорость потока, которую можно найти по измерянному расходу
,
откуда Q
= VcpS.