Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Теоретический материал по гидравлике.doc
Скачиваний:
1
Добавлен:
01.03.2025
Размер:
1.79 Mб
Скачать
  1. Классификация течений (потоков) жидкости. Принцип обратимости движения.

Течение жидкости может быть установившимся (стационарным) и неустановившимся (нестационарным).

Установившимся называется течение, неизменное во времени, при котором давление и скорость являются только функциями координат, но не зависят от времени. Давление и скорость могут изменяться при перемещении частицы жидкости, но в данной неподвижной относительно русла точке давление и скорость во времени не изменяются:

В частном случае стационарное течение жидкости может быть равномерным, когда скорость каждой частицы не изменяется при изменении ее координат, и поле скоростей остается неизменным вдоль потока.

Неустановившимся называется течение жидкости, все характеристики которого (или некоторые из них) изменяются во времени в точках рассматриваемого пространства:

Исследовать установившиеся течения значительно проще, чем неустановившиеся. В дальнейшем мы будем чаще всего вести речь об установившихся течениях. Траектории частиц при стационарном течении неизменны во времени. При нестационарном течении траектории частиц, проходящих через данную точку пространства в различные моменты времени, могут иметь различную форму. Поэтому для рассмотрения картины течения вводится понятие линии тока.

Установившимся стационарным движением жидкости называется такое движение, при котором в каждой данной точке основные элементы движения жидкости – скорость движения и и гидродинамическое давление р не изменяются с течением времени, т.е. зависят только от координат точки. Аналитически это условие запишется так:

и .

Неустановившимся (нестационарным) движением жидкости называется такое движение, при котором в каждой данной точке основные элементы движения жидкости скорость движения и и гидродинамическое давление р – постоянно изменяются, т.е. зависят не только от положения точки в пространстве, но и от времени . Аналитически это условие запишется так:

и .

Примером установившегося движения может быть: движение жидкости в канале, в реке при неизменных глубинах, истечение жидкости из резервуара при постоянном уровне жидкости в нем и др. Неустановившееся движение – это движение жидкости в канале или реке при переменном уровне или при опорожнении резервуара, когда уровень жидкости в нем непрерывно изменяется.

В дальнейшем будет изучаться главным образом установившееся движение жидкости и в отдельных случаях будут разбираться примеры неустановившегося движения.

Установившееся движение в свою очередь подразделяется на равномерное и неравномерное.

Равномерным называется такое установившееся движение, при котором живые сечения вдоль потока не изменяются: в этом случае ; средние скорости по длине потока также не изменяются, т.е. . Примером равномерного движения является: движение жидкости в цилиндрической трубе, в канале постоянного сечения при одинаковых глубинах.

Установившееся движение называется неравномерным, когда распределение скоростей в различных поперечных сечениях неодинаково; при этом средняя скорость и площадь поперечного сечения потока могут быть и достоянными вдоль потока. Примером неравномерного движения может быть движение жидкости в конической трубе или в речном русле переменной ширины.

Напорным называется движение жидкости, при котором поток полностью заключен в твердые стенки и не имеет свободной поверхности. Напорное движение происходит вследствие разности давлений и под действием силы тяжести. Примером напорного движения является движение жидкости в замкнутых трубопроводах (например, в водопроводных трубах).

Безнапорным называется движение жидкости, при котором поток имеет свободную поверхность. Примером безнапорного движения может быть: движение жидкости в реках, каналах, канализационных и дренажных трубах. Безнапорное движение происходит под действием силы тяжести и за счет начальной скорости. Обычно на поверхности безнапорного потока давление атмосферное.

  1. Векторная линия (линия тока, вихревая линия) и ее уравнение. Векторная трубка (трубка тока, вихревая трубка). Поток вектора через незамкнутую и замкнутую поверхность (объемный расход, интенсивность вихревой трубки). Дивергенция вектора а (вектора скоро­сти v и вектора вихря rot v ).

Трубка тока. Струйка тока. Поток жидкости, живое сечение, поперечное сечение, смоченный периметр. Гидравлический диаметр.

Поверхность, образованная линиями тока и проходящая ч/з точки замкнутого контура, называется трубка тока. Линия тока – в каждой точке вектор тока касательный. ( Если периметр охватывает малую площадку, трубку называют элементарной). Жидкость внутри – элементарная струйка или струйка. В пределах поперечного сечения элементарной струйки скорость течения и др. параметры принимаются постоянными. Поток жидкости – совокупность элементарных струек. Струйки в потоке плотно прилегают друг к другу.

Живым сечением называется сечение потока. Каждая элементарная площадка которого нормальна к соответствующему вектору скорости. Если линии тока параллельны, то живое сечение плоское.

Гидравлический радиус , - смоченный периметр, длина линии, по которой живое сечение потока соприкасается с огранич. поверхностями.

Гидравлический диаметр .

Поперечным сечением потока называется сечение площадью S, перпендикулярное оси.

Объемным расходом жидкости Q называется объем жидкости, протекающий через данную поверхность в секунду: .

Поток жидкости - конечный движущийся объем жидкости, состоящий из бесконечно большого числа элементарных струек.

Рис. 16. Линия тока

Линия тока (Рис. 16) это кривая, в каждой точке которой вектор скорости в данный момент времени направлен по касательной.

Рис. 17. Трубка тока

Если в движущейся жидкости взять бесконечно малый замкнутый контур и через все его точки провести линии тока, то образуется трубчатая поверхность, называемая трубкой тока (Рис. 17). Часть потока, заключенная внутри трубки тока, называется элементарной струйкой.

В любой точке трубки тока скорости частиц жидкости направлены по касательной, нормальная к этой поверхности составляющая скорости отсутствует, следовательно, при установившемся движении ни одна частица жидкости ни в одной точке не может проникнуть внутрь струйки или выйти наружу. Таким образом, трубка тока является как бы непроницаемой стенкой, а элементарная струйка – это самостоятельный элементарный поток.

Элементарная струйка характеризует состояние движения жидкости в данный момент времени t. При установившемся движении элементарная струйка имеет следующие свойства:

1. форма и положение элементарной струйки с течением времени остаются неизменными, так как не изменяются линии тока;

2. приток жидкости в элементарную струйку и отток из нее через боковую поверхность невозможен, так как по контуру элементарной струйки скорости направлены по касательной;

3. скорость и гидродинамическое давление во всех точках поперечного лечения элементарной струйки можно считать одинаковым ввиду малости площади .

Поток. Совокупность элементарных струек движущейся жидкости, проходящих через площадку достаточно больших размеров, называется потоком жидкости. Поток ограничен твердыми поверхностями, по которым происходит движение жидкости (труба), и атмосферой (река, лоток, канал и т.п.).

Смоченным периметром живого сечения потока П называется часть контура живого сечения потока, которая ограничена твёрдой средой. (На рисунке смоченный периметр выделен жирной линией).

Расходом называется количество жидкости, протекающее через живое сечение потока (струйки) в единицу времени. Количество жидкости можно задать объемом, массой или весом. Соответственно и расходы бывают объемный Q, массовый Qm и весовой QG.

Для элементарной струйки, имеющей бесконечно малые площади живых сечений, можно считать скорость жидкости в любой точке сечения одинаковой. Тогда

dQ = V dS; dQm= dQ = V dS; dQG= g dQm= gV dS,

где dS – площадь живого сечения струйки.

Для потока конечных размеров скорость в различных точках сечения будет различной, поэтому расход следует определять как сумму элементарных расходов струек

Но это чисто теоретическая формула, воспользоваться ей для определения расхода проблематично. Обычно вводят в рассмотрение среднюю по сечению скорость потока, которую можно найти по измерянному расходу

, откуда Q = VcpS.