
- •1. Предмет аэрогидромеханики, ее структура и методы. Теоретические модели жидкости и газа в аэрогидромеханике,
- •Жидкость и газ с точки зрения молекулярно-кинетической теории. Принципиальные (основные) в аэрогидромеханике параметры состояния жидкости и газа.
- •Плотность жидкости. Силы и напряжения, действующие в жидкости.
- •Вязкость. Сдвиговая вязкость с точки зрения молекулярно-кинетической теории. Свойство прилипания жидкости. Закон вязкого трения Ньютона. Зависимость вязкости от температуры и давления.
- •Ньютоновские и неньютоновские жидкости и их законы вязкого трения.
- •Изолированная и замкнутая система. Химическое, динамическое, тепловое и термодинамическое равновесие изолированной системы. Время релаксации. Равновесный процесс.
- •7 Результаты смешивания веществ. Понятия химического соединения, раствора, дисперсной системы, механической смеси. Растворимость и ее мерз.
- •Напряженное состояние покоящейся жидкости.
- •Гидростатическое давление и его виды. Поле давления. Поверхность равного давления и плоскость уровня.
- •Сжимаемость жидкостей и газов. Коэффициент объемного сжатия и модуль объемной' упругости. Закон Гука. Закон Бойля-Мариогга. Бароклннная и баротропная жидкость.
- •Тепловое расширение жидкостей и газов. Коэффициент теплового расширения. Закон Гей-Люссака. Абсолютный ноль температуры.
- •Уравнение Эйлера равновесия жидкости.
- •Барометрическая формула. Основной закон гидростатики для несжимаемой жидкости: его энергетическая и геометрическая интерпретация.
- •Сила давления жидкости на плоскую стенку. Центр давления. Гидростатический парадокс. Сила давления жидкости на плоскую стенку
- •17.Сила давления жидкости на криволинейную (цилиндрическую) стенку. Закон Архимеда. Сила давления жидкости на криволинейные стенки. Плавание тел
- •Теорема Коши-Гельмгольца.
- •Метод Лагранжа и метод Эйлера изучения движения жидкости. Траектория и линия тока. Ускорение жидкой частицы в методе Лагранжа и методе Эйлера.
- •Классификация течений (потоков) жидкости. Принцип обратимости движения.
- •22. Дивергенция вектора а (вектора скорости V и вектора вихря rot V). Соленоидальное поле вектора а (вектора скорости V и вектора вихря rot V ) и его свойства.
- •25. Две задачи вихревого течения. Формула Био-Савара.
- •Уравнение неразрывности в дифференциальной и интегральной форме. Его физический смысл. Уравнение расхода.
- •35. Кавитация. Кавитация
- •43. Парадокс д'Аламбера-Эйлера. Причины возникновения силы сопротивления.
- •44. Теорема Жуковского о подъемной силе. Эффект Магнуса. Возникновение подъемной силы на крыле.
- •47. Закон Стокса. Давление в движущейся вязкой жидкости,
- •48. Уравнение движения жидкости в напряжениях. Уравнение Навье-Стокса. Система уравнений для определения состояния движущейся вязкой жидкости.
- •49. Физическое подобие как обобщение понятий геометрического подобия и подобия во времени. Связь между масштабами физических величин в подобных явлениях. Необходимые условия динамического подобия.
- •50. Критерии подобия при моделировании движения в вязкой жидкости. Их совместимость и возможность реализации. Автомодельность подобия. Основы гидродинамического подобия
- •Основные характеристики истечения жидкости через отверстия и насадки (формула Торичелли; виды истечения; коэффициенты сжатия, скорости и расхода; типы сжатия струи).
- •Классификация отверстий и их практическое применение
- •Виды насадков и их применение. Истечение жидкости через насадки
- •Истечение жидкости из отверстий и насадков
- •7.1. Истечение через малое отверстие в тонкой стенке при постоянном напоре
- •7.2. Истечение через насадки
- •Основные понятия, определения и теоремы, которыми нужно владеть на экзамене
1. Предмет аэрогидромеханики, ее структура и методы. Теоретические модели жидкости и газа в аэрогидромеханике,
Механика материальной точки и механика твердого тела - это предмет изучения теоретической механики. Наряду с твердыми телами в природе существуют жидкости и газы. Законы механического движения жидкостей изучает гидромеханика. В гидромеханике, как и в механике твердых тел, выделяют кинематику жидкости, гидростатику и гидромеханику.
Кинематика жидкости является разделом гидромеханики, в котором движение изучается вне зависимо от действующих сил; в кинематике устанавливается связь между геометрическими характеристиками движения и временем.
Гидростатика изучает законы равновесия (покоя) жидкости.
Гидродинамика изучает законы движения жидкости.
В зависимости от теоретической или прикладной направленности употребляют наименования теоретическая или прикладная гидромеханика.
Разделы гидромеханики
Гидравлика (техническая механика жидкости) - прикладная часть гидромеханики, которая использует те или иные допущения для решения практических задач. Она обладает сравнительно простыми методиками расчета по сравнению с теоретической механикой жидкости, где применяется сложный математический аппарат. Однако гидравлика дает достаточную для технических приложений характеристику рассматриваемых явлений.
Жидкость и газ с точки зрения молекулярно-кинетической теории. Принципиальные (основные) в аэрогидромеханике параметры состояния жидкости и газа.
Cогласно молекулярно-кинетической теории строения вещества все физические тела в природе (независимо от их размеров) находятся в постоянном взаимодействии между собой. Степень (интенсивность) взаимодействия зависит от масс этих тел и от расстояния между телами. Количественной мерой взаимодействия тел является сила, которая пропорциональна массе тел и всегда будет убывать при увеличении расстояния между телами. В зависимости от размеров тел (элементарные частицы, атомы и молекулы, макротела) характер взаимодействия будет различным.
Согласно молекулярно-кинетической теории строения вещества молекулы находятся в равновесии и, как материальные объекты постоянно взаимодействуют друг с другом. Такое равновесие нельзя считать абсолютным, т.к. молекулы находятся в состоянии хаотического движения (колебания) вокруг центра своего равновесия. Расстояния между молекулами вещества будет зависеть от величин сил действующих на молекулы. Независимо от природы действующих сил их можно сгруппировать на силы притяжения и силы отталкивания.
Материальные тела могут находится в трех агрегатных состояниях: твердом, жидком и газообразном. Каждое из этих состояний характеризуется специфическими свойствами, которые определяются особенностями их молекулярной структуры, непосредственно связанной с силами взаимодействия молекул. Этими силами являются силы притяжения и отталкивания, действующие одновременно и зависящие от расстояния между частицами.
Основными параметрами, характеризующими термодинамическое состояние жидкости, являются температура Т, давление р и плотность ρ.
Связь между плотностью, температурой и давлением устанавливается уравнением состояния, которое для реальных жидкостей и газов выводится в кинетической теории. Однако ввиду сложности общего уравнения состояния и затруднительности определения входящих в него констант, для качественного анализа свойств этих сред пользуются приближенными теоретическими или эмпирическими уравнениями.
Другой термодинамической характеристикой жидкости является сжимаемость.