Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ФИЗИОЛОГИЯ ЧЕЛОВЕКА_шпоры..doc
Скачиваний:
7
Добавлен:
01.03.2025
Размер:
845.82 Кб
Скачать

Значение пищеварения.

Пищеварение представляет собой сложный физиологический процесс, благодаря которому пища, поступившая в пищеварительный тракт, подвергается физическим и химическим изменениям и содержащиеся в ней питательные вещества всасываются в кровь или лимфу.Физические изменения пищи заключаются в ее механической обработке, размельчении, перемешивании и растворении. Химические же изменения состоят из ряда последовательных этапов гидролитического расщепления белков, жиров и углеводов. Эти химические изменения пищи происходят под влиянием гидролитических ферментов, которые делятся на три группы: 1) расщепляющие белки - протеазы; 2) расщепляющие жиры - липазы; 3) расщепляющие углеводы-карбогидразы. Ферменты образуются в секреторных клетках пищеварительных желез и поступают в полость пищеварительного тракта в составе слюны, желудочного, поджелудочного и кишечного соков. На один и тот же вид питательных веществ в пищеварительном тракте действуют последовательно различные ферменты сначала одни, затем другие, вызывая расщепление веществ до все менее сложных химических соединений.

Без химической обработки пищи в пищеварительном тракте большинство веществ пищи - белки, жиры и углеводы, представляющие собой высокомолекулярные соединения, не могут всосаться и использоваться клетками организма. Через стенку пищеварительного тракта в кровь или лимфу поступают лишь образующиеся из них более простые, хорошо растворимые в воде и лишенные видовой специфичности химические соединения. Такими веществами являются продукты расщепления белков (аминокислоты и низкомолекулярные полипептиды), жиров (ди-_и моноглицериды глицерин и_соли жирных кислот) и углеводов (моносахариды). Только вода,минер.соли и некот.орган.вещества поступают в кровь неизмененными.

Основными функциями пищеварительного аппапата являются секре-

торная,_моторная и всасывательная.Секреторная функция заключается в выработке пищеварительных соков: слюны, желудочного, поджелудочного и кишечного соков и желчи. Моторная или двигательная функция осуществляется мускулатурой пищеварительного аппарата и обеспечивает жевание, глотание и передвижение пищи вдоль пищеварительного тракта и выбрасывание непереваренных остатков. Всасывание осуществляется слизистой оболочкой желудка, тонких и толстых кишок.

Наряду с секреторной функцией органы пищеварительного тракта осуществляют также экскреторную функцию, состоящую в выделении из организма некоторых продуктов обмена (например, желчных пигментов) и солей тяжелых металлов.Все функции органов пищеварения подчинены сложным нервным и гуморальным механизмам регуляции.

Методики изучения функций пищеварительного тракта.Основы современной физиологии пищеварения разработаны преимущественно И. П. Павловым и его учениками, благодаря принципиально новому методологическому подходу и новым методическим приемам, которые были ими предложены.

До И. П. Павлова функции органов пищеварения, находящихся в глубине тела и недоступных непосредственному наблюдению, изучались в основном в острых опытах, при которых производилось вскрытие живого животного и вследствие наносимой травмы нарушалось нормальное состояние организма. После того как московский хирург В. А. Басов предложил в 1842 г. изучать желудочную секрецию у собак посредством наложения фистулы желудка.

И. П. Павлов довел до высокого совершенства экспериментально хирургическую методику исследования функций органов пищеварения в хронических опытах. Эта методика заключается в том, что производят оперативное вмешательство в условиях специальной операционной с соблюдением всех правил и предосторожностей, разработанных хирургией, и накладывают фистулу на тот или иной отдел пищеварительного тракта. Фистулой называется созданное искусственно путем операции сообщение полости какого-либо полого органа (желудка, кишечника, желчного пузыря) или протока пищеварительной железы с внешней средой.

Благодаря фистульной методике приобретается возможность наблюдения в любое время за функцией оперированного органа. При этом

фистульные операции производятся так, что при них сохраняются нормальное кровообращение и иннервация исследуемого органа.

К опытам на оперированном животном приступают, когда операционная рана заживает и восстанавливаются здоровье животного и нормальные функции органов пищеварения. С помощью фистул удается собирать

чистые пищеварительные соки без примеси пищи, точно измерять их количество и определять химический состав в разные моменты пищеварения, что позволяет следить за ходом секреторного процесса. Применяя фистульную методику, можно также изучать двигательную(моторную)деятельность органов пищеварения, а также функцию всасывания.

Большим достоинством фистульной методики является то, что при ее применении можно возбуждать деятельность органов пищеварения естественными раздражителями - различными пищевыми веществами.

До недавнего времени методические возможности исследования секреторных и двигательных функций органов пищеварения у человека были весьма ограничены и сводились лишь к введению трубки - зонда в желудок и двенадцатиперстную кишку и рентгеновскому исследованию контура желудка и кишечника, наполненных непроницаемой для лучей Рентгена кашицей. Наложение фистул в исследовательских целях человеку не производится по понятным причинам.

С развитием радиоэлектроники появились новые возможности для изучения функций органов пищеварения. Так, прикладывая электроды к поверхности кожи живота и соединяя их с усилителем постоянного напряжения или тока и электроизмерительным прибором, можно регистрировать биотоки, возникающие .при сокращении гладких мышц желудка. Эта методика получила название электрогастрографии (М. А. Собакин).

Эффективным способом исследования является радиотелеметрическая методика. Сущность ее заключается в том, что человеку дают проглотить миниатюрный радиопередатчик - радиопилюлю - диаметром 8 мм и длиной 15-20 мм. Радиопилюля состоит из генератора электромагнитных колебаний, источника питания (сухого элемента или аккумулятора) и датчика. Датчик радиопилюли представляет собой устройство, реагирующее на концентрацию водородных ионов в содержимом желудка или кишечника, давление внутри них и температуру. Радиопилюли рассчитаны на исследование одного из перечисленных параметров, под влиянием которого изменяется частота излучаемых генератором радиопилюли колебаний. Эти последние воспринимаются антенной, надетой на исследуемого, и радиоприемником. Радиопилюля свободно проходит по пищеварительному тракту и дает непрерывную информацию о степени кислотности или щелочности, о давлении и о температуре в желудке и всех отделах кишечника.

РОЛЬ СЕНСОРНЫХ СИСТЕМ В УПРАВЛЕНИИ ДВИЖЕНИЯМИ. СОМАТОСЕНСОРНАЯ ЧУВСТВИТЕЛЬНОСТЬ И КОРРЕКЦИЯ ДВИЖЕНИЙ

Выполнение движений сопряжено с растягиванием кожи и давлением на отдельные ее участки, поэтому кожные рецепторы оказываются включенными в анализ движений. Эта функциональная связь является физиологической основой комплексного кинестетического анализа движений, при котором импульсы кожных рецепторов дополняют мышечную проприоцептивную чувствительность.

Субъективные ощущения, возникающие в результате афферентной импульсации из проприоцепторов мышц, несмотря на их неопределенность (И.М. Сеченов говорил о "темном мышечном чувстве"), дают достаточно полное представление о положении тела и отдельных его частей в пространстве. Проприо-цепция является физиологической основой управления произвольными движениями.

Благодаря проприоцепции возможны коррекция, уточнение движений в соответствии с текущими потребностями выполнения произвольного действия. Аппарат высшего анализа импульсов с проприоцепторов (корковый отдел анализаторов) расположен на передней поверхности центральной борозды и в прилегающей к ней части передней центральной извилины. В эту область направляется основная часть проприоцептивных импульсов. Часть импульсов направляется в премоторную зону, через которую осуществляются сложные координированные акты, а также изменение ряда вегетативных функций (дыхание, кровообращение) и тонуса скелетных мышц.

Значение вестибулярной сенсорной системы в регуляции движений. Нервные импульсы от рецепторов вестибулярного аппарата передаются к скелетной мускулатуре по проводящим путям спинного мозга. Импульсы от ядер вестибулярных нервов обеспечивают управление позой, ориентацию тела в пространстве и равновесие. Вестибулярные импульсы оказывают преимущественно тормозное влияние на мотонейроны. Однако при определенной частоте и силе этих влияний может наблюдаться и эффект облегчения в проведении двигательных импульсов по мотонейронам. На вставочных нейронах спинного

мозга происходит взаимодействие вестибулярных сигналов двигательными импульсами, регулирующими положение тела конечностей.

Вестибулярные нервные центры находятся под прямым влиянием ядер мозжечка. В вестибулярном ядре Дейтерса и шатровом ядре мозжечка имеются однозначные соматотонически зоны. Так, область регуляции тонуса мышц нижних конечностей имеется и в мозжечке, и в вестибулярных ядрах. Мозжечок регулирует мышечный тонус через соответствующие зоны вестибулярных центров. Добавим, что и классический путь регуля-"; ции мышечного тонуса - мозжечково-красноядерный - так же получает импульсы от вестибулярного аппарата.

Моторная зона коры регулирует мышечный тонус в соответ ствии с частотой и силой восходящей импульсации от вестиб; лярного и двигательного аппаратов. Иначе говоря, вестибу. ный контроль мышечного тонуса - лишь часть системы упр; ления тонусом, включающей кору полушарий большого моз: мозжечок, красное ядро и, наконец, сами вестибулярные ядра,

Системный характер регуляторных влияний является необ ходимым условием формирования двигательных поведенчески} реакций. Сигналы от лабиринтных рецепторов дифференцируют направление движения, повороты, наклоны, ориентировок ные рефлексы, положение центра тяжести. Этот процесс кор ректировочных воздействий становится возможным благодар тому, что сами анатомические структуры вестибулярного аппа рата строго ориентированы по отношению к общему центр Тяжести.

Раздражение вестибулярных ядер приводит к глазному ни стагму. Возбуждение от вестибулярных ядер передается на ядрл отводящего нерва через волокна ретикулярной формации. Специфических путей, связывающих вестибулярные ядра с глазод вигательными нейронами, не существует. Следовательно, ни

стагм может рассматриваться как результат иррадиации возбуждения по неспецифическим путям ретикулярной формации стволовой части мозга.

Вестибулярный контроль мышечной деятельности зависит от функционального состояния спортсмена. Например, при перетренировке ухудшается переносимость вращательных проб, при высоком уровне тренированности выраженные вегетативные реакции на вращательную пробу наблюдаются значительно реже.

Высокая устойчивость вестибулярного аппарата имеет особое значение в условиях невесомости. Отсутствие действия сил тяжести в состоянии покоя приводит к выключению функций вестибулярного аппарата. Во время вращений, связанных с добавочными ускорениями при наклонах головы, возбудимость вестибулярного аппарата повышается. Это вызывает обильное потоотделение, тошноту, рвоту.

Слуховая и зрительная сенсорная коррекция движений. В анализе отдельных характеристик движения (частоты, продолжительности его фаз важное значение принадлежит слуховому анализатору. Оценка длительности отдельных фаз движения основана на различении микроинтервалов времени между звуковыми сигналами, которые поступают к рецепторам слухового анализатора. Это различение осуществляется звуковоспринимающим аппаратом обычным путем, а также вследствие костной проводимости (например, длительность опорной фазы при беге становится доступной анализу вследствие передачи сотрясений тела костям черепа и через них - улитке, минуя наружное и среднее ухо).

С функцией слухового анализатора связана возможность оценки продолжительности и частоты отдельных движений. Это важно в тех видах спорта, успех в которых зависит от совместных, одновременных действий спортсменов (например, в гребле).

При определении пространственных параметров движения проприоцептивные ощущения корректируются зрительной оценкой расстояния или взаимного расположения частей тела. Точность броска зависит от чувственного кинестетического опыта, приобретаемого в процессе неоднократного выполнения этого упражнения, и от способности зрительно опредс расстояние и траекторию полета мяча.

Пространственная оценка взаимного расположения предам тов (глубинное зрение) связана с бинокулярным зрением. Он характеризуется положением зрительных осей, позволяющих определить величину смещения изображения разноудален предметов на сетчатках правого и левого глаза.

Оптимальное состояние баланса глазной мускулатуры (о{ фория) характерно для спортсменов, двигательная деятельное! которых сопряжена с постоянной зрительной оценкой пространственных параметров движений. С ростом спортивно квалификации ортофория улучшается. Значительные физические напряжения сопровождаются нарушением ортофории. При этом ухудшаются результаты бросков по кольцу (в баскетболе точность ударов и приема мяча (в волейболе).

Движущиеся предметы, не спроецированные на центральную ямку глазного яблока, воспринимаются периферичеси элементами сетчатки. Периферическое зрение имеет чрезвычайно важное значение в тех видах спорта, которые связаны постоянным зрительным анализом (спортивные игры, слало скоростной спуск). Зрительная оценка неподвижного предмета производится путем установки головы и глаз в такое положение, при котором предмет проецируется в центральной ямке.

Эффективность выполнения многих физических упражнений зависит от остроты зрения (стрельба, городки). Мышечная деятельность, связанная с напряженной работой зрительно! анализатора (спортивные игры), сопровождается увеличение поля зрения, что является, по-видимому, результатом следового возбуждения периферических элементов сетчатки, возникающего при постоянном перемещении глазных яблок.

Чувствительность зрительного анализатора к внешним раздражителям в покое у спортсменов, имеющих разную степев тренированности, существенно не различается. Вместе с она наиболее высока у представителей тех видов спорта, точность пространственной ориентации является необходим! условием успешности действий (спортивные игры, бокс, горки).

Вкусовой и обонятельный анализатор

Обонятельная и вкусовая сенсорные системы относятся к древнейшим системам. Они предназначены для восприятия и анализа химических раздражений, поступающих из внешней среды. Хеморецепторы обоняния находятся в обонятельном эпителии верхних носовых ходов. Это - волосковые биполярные клетки, передающие информацию через решетчатую кость черепа к клеткам обонятельной луковицы мозга и далее через обонятельный тракт к обонятельным зонам коры (крючек морского коня, извилина гиппокампа и другие). Различные рецепторы избирательно реагируют на разные молекулы пахучих веществ, возбуждаясь лишь теми молекулами, которые являются зеркальной копией поверхности рецептора. Они воспринимают эфирный, камфарный, мятный, мускусный и др. запахи, причем к некоторым веществам чувствительность необычайно высока.

Хеморецепторы вкуса представляют собой вкусовые луковицы, расположенные в эпителии языка, задней стенке глотки и мягкого неба. У детей их количество больше, а с возрастом - убывает. Микроворсинки рецепторных клеток выступают из луковицы на поверхность языка и реагируют на растворенные в воде вещества. Их сигналы поступают через волокна лицевого и языкоглоточного нервов (продолговатый мозг) в таламус и далее в соматосенсорную область коры. Рецепторы разных частей языка воспринимают четыре основных вкуса: горького (задняя часть языка), кислого (края языка), сладкого (передняя часть языка) и соленого (яердняя часть и края языка). Между вкусовыми ощущениями и химическим строением вещества отсутствует строгое соответствие, так как вкусовые ощущения могут изменяться при заболевании, беременности, условно-рефлекторных воздействиях, изменениях аппетита. В формировании вкусовых ощущений участвуют обоняние, тактильная, болевая и температурная чувствительность. Информация вкусовой сенсорной системы используется для организации пищевого поведения, связанного с добыванием, выбором, предпочтением или отверганием пищи, формированием чувства голода, сытости.

Слуховой анализатор

Слуховая сенсорная система служит для восприятия и анализа звуковых колебаний внешней среды. Она приобретает у человека особо важное значение в связи с развитием речевого общения между людьми. Деятельность слуховой сенсорной системы имеет также значение для оценки временных интервалов - темпа и ритма движений. Слуховая сенсорная система состоит из следующих разделов:

1)периферический отдел специализированный орган, состоящий из наружного, среднего и внутреннего уха;

2)проводниковый отдел - первый нейрон проводникового отдела, находящийся в спиральном узле улитки, получает возбуждение от рецепторов внутреннего уха, отсюда информация поступает по его волокнам, т. е. по слуховому нерву (входящему в 8 пару черепно-мозговых нервов) ко второму нейрону в продолговатом мозге и после перекреста часть волокон идет к третьему нейрону в заднем двухолмии среднего мозга, а часть к ядрам промежуточного мозга-внутреннему коленчатому телу;

3) корковый отдел - представлен четвертым нейроном, который находится в первичном (проекционном) слуховом поле в височной области коры больших полушарий и обеспечивает возникновение ощущения, а более сложная обработка звуковой информации происходит в расположенном рядом вторичном слуховом поле, отвечающем за формирование восприятия и опознание информации. Полученные сведения поступают в третичное поле нижнетеменной зоны, где интегрируются с другими формами информации.

Наружное ухо является звукоулавливающим аппаратом.

Звуковые колебания улавливаются ушными раковинами (у животных они могут поворачиваться в источнику звука) и передаются по наружному слуховому проходу к барабанной перепонке, которая отделяет наружное ухо от среднего. Улавливание звука и весь процесс слушания двумя ушами - так называемый бинауральныйслух- имеет значение для определения направления звука. Звуковые колебания, идущие сбоку, доходят до ближайшего уха на несколько раньше, чем до до другого. Этой ничтожной разницы во времени прихода звука к обоим ушам достаточно, чтобы определить его направление.

Среднее ухо является звукопроводящим аппаратом. Оно представляет собой воздушную полость, которая через слуховую (Евстахиеву) трубу соединяется с полостью носоглотки. Колебания от барабанной перепонки через среднее ухо передают соединенные друг с другом 3 слуховые косточки - молоточек, наковальня и стре-мячко, а последнее через перепонку овального окна передает эти колебания жидкости, находящейся во внутреннем ухе, - перилимфе. Благодаря слуховым косточкам амплитуда колебаний уменьшается, а сила их увеличивается, что позволяет приводить в движение столб жидкости во внутреннем ухе. При сильных звуках специальные мышцы уменьшают подвижность барабанной перепонки и слуховых косточек, адаптируя слуховой аппарат к таким изменениям раздражителя и предохраняя внутреннее ухо от разрушения. Благодаря соединению через слуховую трубу воздушной полости среднего уха с полостью носоглотки возникает возможность выравнивания давления по обе стороны барабанной перепонки, что предотвращает ее разрыв при значительных изменениях давления во внешней среде - при погружениях под воду, подъемах на высоту, выстрелах и пр. Это барофункция уха.

Внутреннее ухо является звуковоспринимаюшим аппаратом. Оно расположено в пирамидке височной кости и содержит улитку, которая у человека образует 2.5 спиральных витка. Улитковый канал разделен двумя перегородками основной мембраной и вестибулярной мембраной на 3 узких хода: верхний (вестибулярная лестница), средний (перепончатый канал) и нижний (барабанная лестница). На вершине улитки имеется отверстие, соединяющее верхний и нижний каналы в единый, идущий от овального окна к вершине улитки и далее к круглому окну. Полость его заполнена жидкостью - перилимфой, а полость среднего перепончатого канала заполнена жидкостью иного состава - эндолимфой. В среднем канале расположен звуковоспринимающий аппарат - Кортиев орган, в котором находятся механореиепторы звуковых колебаний - волосковые клетки.

Восприятие звука основано на двух процессах, происходящих в улитке: 1) разделение звуков различной частоты по месту их наибольшего воздействия на основную мембрану улитки и 2) преобразование рецепторными клетками механических колебаний в нервное возбуждение. Звуковые колебания, поступающие во внутреннее ухо через овальное окно, передаются перилимфе, а колебания этой жидкости приводят к смещениям основной мембраны. От высоты звука зависит высота столба колеблющейся жидкости и соответственно место наибольшего смещения основной мембраны: звуки высокой частоты дают наибольший эффект на начале основной мембраны, а низких частот -доходят до вершины улитки. Таким образом, при различных по частоте звуках возбуждаются разные волосковые клетки и разные нервные волокна, т. е. осуществляется пространственный код. Увеличение силы звука приводит к увеличению числа возбужденных волосковых клеток и нервных волокон, что позволяет различать интенсивность звуковых колебаний.

Волоски рецепторых клеток погружены в покровную мембрану. При колебаниях основной мембраны начинают смещаться находящиеся на ней волосковые клетки и их волоски механически раздражаются покровной мембраной. В результате в волосковых рецепторах возникает процесс возбуждения, который по афферентным волокнам направляется к нейронам спирального узла улитки и далее вЦНС.

Различают костную и воздушную проводимость звука. В обычных условиях у человека преобладает воздушная проводимость - проведение звуковых колебаний через наружное и среднее ухо к рецепторам внутренего уха. В случае костной проводимости звуковые колебания передаются через кости черепа непосредственно улитке (например, при нырянии, подводном плавании).

Человек обычно воспринимает звуки с частотой от 15 до 20000Гц (в диапазоне 10-11 октав). У детей верхний предел достигает 22000 Гц, с возрастом он понижается. Наиболее высокая чувствительность обнаружена в области частот от 1000 до 3000 Гц. Эта область соответствует наиболее часто встречающимся частотам человеческой речи и музыки.

Зрительный анализатор

Зрительная сенсорная система служит для восприятия и анализа световых раздражений. Через нее человек получает до 80-90 % всей информации о внешней среде. Глаз человека воспринимает световые лучи лишь в видимой части спектра - в диапазоне от 400 до 800 нм.

Состоит из отделов: периферический отдел - это сложный вспомогательный орган - глаз, в котором находятся фоторецепторы и тела 1 -х (биполярных) и 2-х (ганглиозных) нейронов; проводниковый отдел- зрительный нерв (вторая пара черепно-мозговых нервов), представляющий собой волокна 2-ых нейронов и частично перекрещивающийся в хиазме, передает информацию третьим нейронам, часть которых расположена в переднем двухолмии среднего мозга другая часть-в ядрах промежуточного мозга, так называемых наружных коленчатых телах; корковый отдел- 4-е нейроны находятся в 17 поле затылочной области коры больших полушарий. Это поле представляет собой первичное (проекционное) поле или ядро анализатора, функцией которого является возникновение ощущений. Рядом с ним находится вторичное поле или периферия анализатора (18 и 19 поля), функция которого-опознание и осмысливание зрительных ощущений, что лежит в основе процесса восприятия. Дальнейшая обработка и взаимосвязь зрительной информации с информацией от других сенсорных систем происходит в ассоциативных задних третичных полях коры-нижнетеменных областях.

Глазное яблоко представляет собой шаровидную камеру диаметром около 2.5 см, содержащую светопроводящие среды -роговицу, влагу передней камеры, хрусталик и студнеобразную жидкость - стекловидное тело, назначение которых преломлять световые лучи и фокусировать их в области расположения рецепторов на сетчатке. Стенками камеры служат 3 оболочки. Наружная непрозрачная оболочка- склера переходит спереди в прозрачную роговицу. Средняя сосудистая оболочка в передней части глаза образует ресничное тело и радужную оболочку, обуславливающую цвет глаз. В середине радужной оболочки (радужки) имеется отверстие- зрачок, регулирующий количество пропускаемых световых лучей. Диаметр зрачка регулируется зрачковым рефлексом, центр которого находится в среднем мозге. Внутренняя сетчатая оболочка (сетчатка) или ретина, содержит фото-рецепторы глаза - палочки и колбочки и служит для преобразования световой энергии в нервное возбуждение. Светопреломляющие среды глаза, преломляя световые лучи, обеспечивают четкое изображение на сетчатке. Основными преломляющими средами глаза человека являются роговица и хрусталик. Лучи, идущие из бесконечности через центр роговицы и хрусталика (т. е. через главную оптическую ось глаза) перпендикулярно к их поверхности, не испытывают преломления. Все остальные лучи преломляются и сходятся внутри камеры глаза в одной точке - фокусе. Приспособление глаза к четкому видению различно удаленных предметов (его фокусирование) называется аккомодацией. Этот процесс у человека осуществляется за счет изменения кривизны хрусталика. Ближняя точка ясного видения с возрастом отодвигается (от 7 см в 7-10 лет до 75 см в 60 лет и более), так как снижается эластичность хрусталика и ухудшается аккомодация. Возникает старческая дальнозоркость.

В норме длинник глаза соответствует преломляющей силе глаза. Однако у 35% людей имеются нарушения этого соответствия. В случае близорукости длинник глаза больше нормы и фокусировка лучей происходит перед сетчаткой, а изображение на сетчатке становится расплывчатым. В дальнозорком глазу, наоборот, длинник глаза меньше нормы и фокус располагается за сетчаткой. В результате изображение на сетчатке тоже расплывчато.

Фоторецепторы глаза (палочки и колбочки)-это высокоспециализированные клетки, преобразующие световые раздражения в нервное возбуждение. Фоторецепция начинается в наружных сегментах этих клеток, где на специальных дисках, как на полочках, расположены молекулы зрительного пигмента (в палочках - родопсин, в колбочках - разновидности его аналога). Под действием света происходит ряд очень быстрых превращений и обесцвечивание зрительного пигмента. В ответ на стимул эти рецепторы, в отличие от всех других рецепторов, формируют рецепторный потенциал в виде тормозных изменений на мембране клетки. Другими словами, на свету происходит гиперполяризация мембран рецепторных клеток, а в темноте-ихдеполяризация, т. е. стимулом для них является темнота, а не свет. При этом в соседних клетках происходят обратные изменения, что позволяет отделить светлые и темные точки пространства. Фотохимические реакции в наружных сегментах фоторецепторов вызывают изменения в мембранах остальной части рецепторной клетки, которые передаются биполярным клеткам (первым нейронам), а затем и ганглиозным клеткам (вторым нейронам), от которых нервные импульсы направляются в головной мозг. Часть ганглиозных клеток возбуждается на свету, часть - в темноте.

Палочки, рассеянные преимущественно по периферии сетчатки (их 130 млн), и колбочки, расположенные преимущественно в центральной части сетчатки (их 7 млн), различаются по своим функциям .Палочки обладают более высокой чувствительностью, чем колбочки, и являются органами сумеречного зрения. Они воспринимают черно-белое (бесцветное) изображение. Колбочки представляют собой органы дневного зрения. Они обеспечивают цветное зрение. Существует 3 вида колбочек у человека: воспринимающие преимущественно красный, зеленый и сине-фиолетовый цвет. Разная их цветовая чувствительность определяется различиями в зрительном пигменте. Комбинации возбуждения этих приемников разных цветов дают ощущения всей гаммы цветовых оттенков, а равномерное возбуждение всех трех типов колбочек-ощущение белого цвета. При нарушении функции колбочек наступает цветовая слепота (дальтонизм).

Остротой зрения называется способность различать отдельные объекты. Она измеряется минимальным углом, при котором две точки воспринимаются как раздельные, - примерно 0.5 угловой минуты. В центре сетчатки колбочки имеют более мелкие размеры и расположены гораздо плотнее, поэтому способность к пространственному различению здесь в 4-5 раз выше, чем на периферии сетчатки. Следовательно, центральное зрение отличается более высокой остротой зрения, чем периферическое зрение. Острота зрения зависит и от четкости изображения на сетчатке, т. е. от преломляющих свойств глаза, от степени аккомодации, от величины зрачка

Полем зрения называется часть пространства, видимая при неподвижном положении глаза. Для черно-белых сигналов поле зрения обычно ограничено строением костей черепа и положением в глазницах глазных яблок. Для цветных раздражителей поле зрения меньше, так как воспринимающие их колбочки находятся в центральной части сетчатки. Наименьшее поле зрения отмечается для зеленого цвета. При утомлении поле зрения уменьшается.

Человек обладает бинокулярным зрением, т.е. зрением двумя глазами. При нарушениях сбалансированности мышечных усилий наблюдается скрытое (или физиологическое) косоглазие, которое в бодром состоянии человек компенсирует волевой регуляцией, а при значительных - явное косоглазие.

Глазодвигательный аппарат имеет важное значение в восприятии скорости движения, которую человек оценивает либо по скорости перемещения изображения по сетчатке неподвижного глаза, либо по скорости движения наружных мышц глаза при следящих движениях глаза.

Изображение, которое видит человек двумя глазами, прежде всего определяется его ведущим глазом. Ведущий глаз обладает более высокой остротой зрения, мгновенным и особенно ярким восприятием цвета, более обширным полем зрения, лучшим ощущением глубины пространства. При прицеливании воспринимается лишь то, что входит в поле зрения этого глаза. В целом, восприятие объекта в большей мере обеспечивается ведущим глазом, а восприятие окружающего фона-неведущим глазом.

6)

Кроветворные органы — органы, в которых происходит образование форменных элементов крови. Кроветворные органы во внеутробной жизни человека: красный костный мозг (заполняющий у детей до 4 лет все костные полости, а у взрослых сохраняющийся только в плоских костях и в эпифизах трубчатых костей), лимфатическая и ретикуло-гистиоцитарная система. В норме в костном мозге происходит преимущественное образование эритроцитов, гранулоцитов (нейтрофилы, эозинофилы и базофилы) и тромбоцитов. Лимфоциты продуцируются в основном в лимфатической системе (селезенка и лимфатические узлы). При патологических состояниях (ретикулезах, лейкозах) нарушается нормальная специализация отделов кроветворной системы: в селезенке могут возникнуть очаги миелоидного (костномозгового) кроветворения, а в костном мозге — лимфоидного. Так как в организме происходит непрерывное разрушение форменных элементов крови, основной функцией кроветворных органов является непрерывное их пополнение, то есть эти органы все время работают в определенном ритме, который нарушается при заболеваниях. См. также Кроветворение.

Эритроциты – красные кровяные тельца, имеющие форму двояковогнутого диска, в крови мужчины их 4,0-5 • 1012/л, у женщины – 3,7-4,7 • 1012/л. Во всей крови человека находится 25 триллионов красных кровяных телец.

Гемоглобин, который входит в состав эритроцитов, является основной составляющей эритроцита и обеспечивает дыхательную функцию. Гемоглобин состоит из одной молекулы Глобина и 4 молекул двухвалентного железа. Общее количество для мужчин составляет 130-160 г/л, для женщин 120-140 г/л.

Существует несколько разновидностей гемоглобина:

- примитивный,

- фетальный,

- гемоглобин взрослого человека.

В норме гемоглобин содержится в виде 3 физиологических соединений:

- оксигемоглобин – гемоглобин соединенный с кислородом;

- восстановленный или дезоксигемоглобин – гемоглобин, отдавший кислород;

- карбгемоглобин – гемоглобин, соединенный с углекислым газом.

Также существуют патологические соединения:

- карбоксигемоглобин – соединение гемоглобина с угарным газом;

- метгемоглобин – это патологическое соединение, возникающее под воздействием сильных окислителей, что приводит к превращению двухвалентного железа в трехвалентное.

Вследствие некоторых патологических и физиологических обстоятельств может происходить изменение количества эритроцитов, например, эритроцитоз, который бывает абсолютный или относительный,эритропения, а также гемолиз (разрушение эритроцитов), который по механизму возникновения может быть химическим, механическим, термическим, биологическим, осмотическим.

Лейкоциты – белые кровяные тельца, которые обеспечивают организм защитой от воздействия микробов, вирусов и других патологических факторов. Общее количество их составляет 4-8,8 • 109/л. Они формируют иммунитет, который бывает противомикробный, противовирусный, противопаразитарный, противоопухолевый, противотрансплантационный и др.

Лейкоциты делятся на две группы:

- агранулоциты: нейтрофилы, эозинофилы, базофилы,

- гранулоциты: лимфоциты и моноциты.

При оценивании лейкоцитов учитывают процентное соотношение отдельных форм эритроцитов, которое называется лейкоцитарной формулой.

Лейкоциты – одна из наиболее реагирующих систем организма, поэтому их количество изменяется при самых разнообразных обстоятельствах. Таким образом, выделяют лейкоцитоз (увеличение количества лейкоцитов) и лейкопению.

Существует два вида лейкоцитоза – физиологический и реактивный (или истинный).

Существует несколько видов физиологического лейкоцитоза: пищеварительный, миогенный, эмоциональный, болевой.

Реактивный, или истинный, лейкоцитоз возникает при различных воспалительных процессах и инфекционных заболеваниях.

Кровообразование – это процесс, который связан с созданием и развитием форменных элементов крови. Существует эритропоэз – образование эритроцитов и лейкопоэз – образование лейкоцитов.

Процесс кровообразования отдельных форменных элементов крови происходит в разных органах и тканях. Так, эритроциты, гранулоциты, моноциты образуются в красном костном мозге, который содержится в плоских костях и метафизах трубчатых костей. Лимфоциты, кроме костного мозга, образуются в лимфатических узлах, селезенке, лимфоидной ткани кишечника и миндалинах.

Разрушение старых клеток происходит в мононуклеарной фагоцитарной системе (МФС), которой особенно много в печени и селезенке.

Жидкое состояние крови и целостность кровеносного русла являются необходимыми условиями жизнедеятельности. Эти условия обеспечиваются системой свертывания крови (система гемокоагуляции), которая обеспечивает циркуляцию крови в жидком состоянии и восстанавливает целостность путей образованием тромбов в поврежденных сосудах.

Знание механизмов свертывания крови необходимы для понимания появления причин ряда заболеваний и возникновения осложнений, связанных с нарушением гемокоагуляции. Сейчас очень много людей погибает от болезней, связанных с нарушением свертывания крови (инфаркт миокарда, тромбозы сосудов малого и большого круга кровообращения, тяжелые кровопотери в акушерской и хирургической практике).

Процесс тромбообразования имеет 3 фазы:

- образование протромбиназы;

- образование тромбина;

- образование фибрина.

Кроме этого, выделяют префазу и послефазу гемокоагуляции. В префазу происходит сосудисто-тромбоцитарный гемостаз, который обеспечивает остановку кровотечения на уровне микроциркуляторного русла. Послефаза включает два независимых процесса – это ретракция (уплотнение) и фибринолиз (расщепление) кровяного сгустка.

Таким образом, в гемостазе участвуют такие органы: стенка сосудов, форменные элементы крови, плазменная ферментативная система крови, которая представлена 13 плазменными факторами, участвующими в остановке кровотечения в крупных сосудах.

Свертывание крови – это вторичная защитная реакция организма, которая возникает при поражении сосудов. Система гемокоагуляции обеспечивает жидкое состояние крови и оптимальное состояние стенок сосудов.

Жидкое состояние крови также обеспечивается за счет наличия в организме антикоагулянтов, которые делятся на две группы:

- первичные – антитромбин-3, гепарин,

- вторичные, образующиеся в процессе свертывания крови и фибринолиза (фибрин).

Ускорение свертывания крови называется гиперкоагуляцией, а снижение – гипокоагуляцией.