Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Понятия информации.docx
Скачиваний:
3
Добавлен:
01.03.2025
Размер:
242.91 Кб
Скачать

27Способы создания цвета: понятие цветовой модели, цветовые модели rgb, cmyk, hsb их характеристика, достоинства и недостатки Цветовые модели

Теоретические проблемы, затронутые в предыдущей главе, на данном историческом периоде решены в определенной степени тем, что в компьютерных технологиях используется несколько цветовых моделей, которые рассматриваются в данной главе.

Цветовая модель (или цветовое пространство) — это не более чем способ описания цвета с помощью количественных характеристик. В этом случае не только легко сравнивать отдельные цвета и их оттенки между собой, но и использовать их в цифровых технологиях.

В цветовой модели (пространстве) каждому цвету можно поставить в соответствие строго определенную точку. В этом случае цветовая модель — это просто упрощенное геометрическое представление, основанное на системе координатных осей и принятого масштаба.

Однако цвет, как сложное физическое и психофизиологическое явление, не укладывается в единственную и простую модель, поэтому в области цветове-дения создано множество моделей, исходя из разных практических требований. В цифровых технологиях используются, как минимум, четыре основных модели: RGB, CMYK, HSB в различных вариантах и Lab.

Для нужд полиграфии разработаны также многочисленные библиотеки плашечных цветов, расширяющих цветовые охваты стандартных полиграфических триадных систем.

Цветовая модель RGB

Множество цветов видны оттого, что излучается свет определенных длин волн. К излучаемым цветам можно отнести, например, белый свет, цвета на экране телевизора, монитора, кино, слайд-проектора и т. д. Цветов огромное количество, но из них выделено только три, которые считаются основными (первичными): это — красный, зеленый и синий.

Перечисленные цвета совпадают с теми цветами, которые упоминались при обсуждении основ физиологии зрения.

При смешении двух основных цветов результат осветляется: из смешения красного и зеленого получается желтый, из смешения зеленого и синего — голубой, синий и красный дают пурпурный. Если смешиваются все три цвета, образуется белый. Поэтому такие цвета называются аддитивными.

Модель, которую мы упоминали при обсуждении анализа и синтеза цвета, носит название модели RGB по первым буквам английских слов Red (Красный), Green (Зеленый) и Blue (Синий).

Поскольку в модели используется три независимых значения, ее можно представить в виде трехмерной системы координат.

Каждая координата отражает вклад одной из составляющех в результирующий цвет в диапазоне от нуля до максимального значения (его численное значение в данный момент не играет роли, обычно это число 255, т. е. на каждой из осей откладывается уровень серого в каждом из цветовых каналов)

В результате получается некий куб, внутри которого и "находятся" все цвета, образуя цветовое пространство модели RGB. Любой цвет, который можно выразить в цифровом виде, входит в пределы этого пространства.

Объем такого куба (количество цифровых цветов) легко рассчитать: поскольку на каждой оси можно отложить 256 значений, то 256 в кубе (или 2 в двадцать четвертой степени) дает число 16 777 216.

Замечание

Это означает, что в цветовой модели RGB можно описать более 16 миллионов цветов, но использование цветовой модели RGB вовсе не гарантирует, что такое количество цветов может быть обеспечено на экране или на оттисках. В определенном смысле это число — скорее предельная (потенциальная) возможность.

Важно отметить особенные точки и линии данной модели.

  • Начало координат: в этой точке все составляющие равны нулю, излучение отсутствует, что равносильно темноте, т. е. это точка черного цвета.

  • Точка, ближайшая к зрителю: в этой точке все составляющие имеют максимальное значение, что обеспечивает белый цвет.

  • На линии, соединяющей эти точки (по диагонали), располагаются серые оттенки: от черного до белого. Это происходит потому, что значения всех трех составляющих одинаковы и располагаются в диапазоне от нуля до максимального значения. Такой диапазон иначе называют серой шкалой (grayscale). В компьютерных технологиях сейчас чаще всего используются 256 градаций (оттенков) серого. Хотя некоторые сканеры имеют возможность кодировать и 1024 оттенка серого.

  • Три вершины куба дают чистые исходные цвета, остальные три отражают двойные (бинарные) смешения исходных цветов: из красного и зеленого получается желтый, из зеленого и синего — голубой, а из красного и синего — пурпурный.

Замечание

Следует отметить, что у аддитивной модели синтеза цвета существуют ограничения. В частности, не удается с помощью физически реализуемых источников основных цветов получить голубой цвет (как в теории — путем смешения синей и зеленой составляющих), на экране монитора он создается с некоторыми техническими ухищрениями. Кроме того, любой получаемый цвет находится в сильной зависимости от вида и состояния применяемых источников. Одинаковые числовые параметры цвета на различных экранах будут выглядеть по-разному. И, по сути дела, модель RGB — это цветовое пространство какого-то конкретного устройства, например сканера или монитора.

Эта модель, конечно, совсем не очевидна для художника или дизайнера, но ее необходимо принять и разобраться в ней вследствие того, что она является теоретической основой процессов сканирования и визуализации изображений на экране монитора.

 

Цветовая модель CMYK

К отражаемым относятся цвета, которые сами не излучают, а используют белый свет, вычитая из него определенные цвета. Такие цвета называются субтрактивными ("вычитательными"), поскольку они остаются после вычитания основных аддитивных: полиграфическая краска голубого цвета поглощает красный и отражает синий и зеленый цвета.

Понятно, что в таком случае и основных субтрактивных цветов будет три, тем более, что они уже упоминались: голубой, пурпурный, желтый.

 

Перечисленные цвета составляют так называемую полиграфическую триаду (process colors). При печати эти цвета поглощают красную, зеленую и синюю составляющие белого света таким образом, что большая часть видимого цветового спектра может быть репродуцирована на бумаге. Каждому пикселу в CMYK-изображении присваиваются значения, определяющие процентное содержание триадных красок.

В итоге получается, что нулевые значения составляющих дают белый цвет, максимальные значения должны давать черный, их равные значения — оттенки серого, кроме того, имеются чистые субтрактивные цвета и их двоиные сочетания. Это означает, что модель, в которой они описываются, похожа на модель RGB.

Но проблема заключается в том, что данная модель описывает реальные полиграфические краски (впечатление множества цветов обеспечивается варьированием размеров точек, условно говоря, трех цветов, это примерно соответствует варьированию интенсивности свечения люминофоров на экране монитора), которые — увы! — далеко не так идеальны, как цветной луч света. Они имеют примеси, поэтому не могут полностью перекрыть весь цветовой диапазон (поскольку, с одной стороны, неполностью поглощают свою зону спектра, а с другой, частично захватывают излучение соседних зон спектра), а это приводит, в частности, к тому, что смешение трех основных красок, которое должно давать (согласно теоретической модели) черный цвет, дает какой-то неопределенный ("грязный") темный цвет, но это скорее темно-коричневый, чем истинно черный цвет.

Другим несоответствием реальных процессов и теоретической цветовой модели является утверждение, что равные значения цветовых компонентов дают нейтральный серый. На самом деле в полиграфии существует проблема, именуемая "баланс по серому" (невозможно создать нейтральный серый, используя равные площади голубой, пурпурной и желтой растровой точки). Суть проблемы баланса сводится к тому, чтобы добиться такого соотношения площадей растровых точек цветных красок, которое бы вызывало визуальное восприятие нейтрального цвета.

Для компенсации этих и других недостатков в число основных полиграфических красок была внесена черная краска (она позволяет получить чистый насыщенный черный цвет и нейтральные тона при использовании технологий UCR и GCR). Именно эта краска добавила последнюю букву в название модели CMYK, хотя и не совсем обычно. С — это Cyan (голубой), М — это Magenta (пурпурный), Y - Yellow (желтый), а (внимание!) К — это ЫасК (Черный), т. е. от слова взята не первая, а последняя буква. Хотя более вероятным представляется другая версия: буква К — это сокращение от слова Key ("ключевой", "основной", "контурный"). Черный цвет играет решающую роль в полиграфическом производстве (от него в значительной степени зависит общая резкость оттисков).

Замечание

Пурпурный цвет, по утверждениям физиков, отсутствует в солнечном свете, а предстает в природе только в форме пигментов, например красок, которые поглощают зеленые оттенки, но отражают синие и красные.

Модели RGB и CMYK, хотя и связаны друг с другом, однако их взаимные переходы друг в друга (конвертирование) никогда не происходят без потерь. Тем более что цветопередача полиграфического воспроизведения изображений еще более зависима от всевозможных условий (аппаратных и технологических). И речь идет лишь о том, чтобы уменьшить потери до приемлемого уровня. Это вызывает необходимость очень сложных калибровок всех аппаратных частей, составляющих работу с цветом, — сканера (он осуществляет ввод изображения), монитора (по нему судят о цвете и корректируют его), выводного устройства (оно создает оригиналы для печати), печатного станка (выполняющего конечную стадию).