
- •1.Методологические и методические основы истории науки и техники
- •1.2.Социальные функции техники
- •1.3.Тенденции развития современной техники
- •1.4.Эволюция понятий «технология» и «техника»
- •1.5.Периоды развития понятий «техника» и «технология»
- •1.6.Контрольные вопросы:
- •2.Развитие техники в древнем мире (500- 4 тыс. Лет до н. Э.)
- •2.1.Возникновение и распространение простых орудий труда (см. Документы № № 2-4 хрестоматии).
- •2.2.Открытие огня и способы его добывания (см. Документ № 9 хрестоматии)
- •2.3.Накопление простых орудий труда (см. Документы №№ 5-7 хрестоматии)
- •2.4.Изобретение лука и стрел
- •2.5.Появление сложных орудий труда (см. Документ № 10)
- •2.6.Первое применение металла (см. Документ № 8)
- •2.7.Возникновение земледелия
- •2.8.Контрольные вопросы:
- •3.Античная наука и техника (4 тыс. До н.Э. – V в.)
- •3.1.Развитие и распространение сложных орудий труда
- •3.2.Орудия труда из меди и бронзы
- •3.3.Выплавка железа
- •3.4.Земледелие и оросительные сооружения
- •3.5.Обособление ремесла от земледелия
- •3.6.Строительная техника
- •3.7.Горное дело
- •3.8.Развитие военной техники
- •3.9.Улучшение способов передвижения
- •3.10.Возникновение отдельных отраслей естествознания в связи с потребностями производства
- •3.11.Периодизация античной науки (см. Документы №№ 12-13 хрестоматии)
- •3.12.Контрольные вопросы:
- •4.Средневековая наука и техника (V-XVI вв.)
- •4.1.Распространение сложных орудий труда, приводимых в действие человеком
- •4.2.Техника земледелия
- •4.3.Развитие ремесла
- •4.4.Выплавка металла
- •4.5.Горное дело
- •4.6.Крупнейшие изобретения
- •4.7.Состояние естествознания (см. Документы №№ 15-18 хрестоматии)
- •4.8.Контрольные вопросы:
- •5.Естественнонаучные и технические знания на Руси в X- первой половине XVII вв.
- •5.1.Складывание гуманитарных начал просвещения
- •5.2.Астрономия
- •5.3.Математика (см. Документ № 19 хрестоматии)
- •5.4.Физика
- •5.4.1.Применение физических законов в технике
- •5.4.2.Представления в области метеорологии
- •5.5.Механика
- •5.6.Химия
- •5.7.Геология
- •5.8.География
- •5.9.Биология
- •5.9.1.Представления о фауне и флоре
- •5.9.2.Медицина
- •5.10.Контрольные вопросы:
- •6.Мировые открытия и технические достижения в XVII – первой половине XVIII вв.
- •6.1.Создание мануфактур
- •6.2.Изменения в технике металлургии
- •6.3.Изменения в военной технике в связи с применением огнестрельного оружия
- •6.4.Техника текстильного производства
- •6.5.Часы и мельница как основа для создания машин. Первые машины и изобретательство
- •6.6.Состояние естествознания
- •6.7.Контрольные вопросы:
- •7.Вхождение России в мировое научное сообщество во второй половине XVII - XVIII вв.
- •7.1.Гуманитарные начала просвещения
- •7.2.Становление отечественной науки и техники. Организационные основы научной деятельности. Создание Академии наук и художеств
- •7.2.1.Основные направления деятельности, структура и состав
- •7.2.2.Собирание естественнонаучных экспонатов, исторических памятников и книжной продукции, издательская работа
- •7.2.3.Педагогическая деятельность
- •7.3.Основные направления развития науки
- •7.3.1.Астрономия
- •7.3.2.Математика
- •7.3.3.Теоретическая механика
- •7.3.4.Физика
- •7.3.5.Химия
- •7.3.6.Геология
- •7.3.7.География
- •7.3.8.Биология
- •7.3.9.Медицина
- •7.4.Восприятие российским обществом естественнонаучных и технических знаний
- •7.5.Технические усовершенствования
- •7.6.Контрольные вопросы:
- •8.Техника эпохи промышленного переворота 1760-1870 гг. (см. Документ № 38 хрестоматии)
- •8.1.Последовательность возникновения машинного капитализма
- •8.1.1.Первые рабочие машины в текстильном производстве
- •8.1.2.Первые рабочие машины
- •8.1.3.Переход к механическому ткачеству как результат революционизирующего влияния рабочих прядильных машин
- •8.1.4.Создание фабричной системы. Борьба рабочих против машин
- •8.2.Создание универсального теплового двигателя
- •8.2.1.Технико-экономические предпосылки изобретения универсального теплового двигателя
- •8.2.2.Первый тепловой двигатель универсального назначения и.И. Ползунова
- •8.2.3.Изобретение практически пригодного универсального теплового двигателя. Работы Дж. Уатта
- •8.3.Создание рабочих машин в машиностроении
- •8.4.Развитие техники металлургии
- •8.4.1.Развитие способов передела чугуна в железо
- •8.4.2.Развитие техники получения стали. Завершение технического перевооружения металлургии в первой половине XIX в.
- •8.5.Развитие техники горного дела
- •8.5.1.Новые требования, предъявляемые к горному делу
- •8.5.2.Технические усовершенствования в области разведки полезных ископаемых
- •8.5.3.Усовершенствование техники проходки и крепления горных выработок
- •8.5.4.Механизация подземного транспорта, подъема и водоотлива
- •8.6.Развитие техники земледелия
- •8.6.1.Влияние крупной машинной индустрии на технику сельского хозяйства. Механизация обработки земли. Эволюция плуга
- •Механизация процесса сева
- •Механизация процесса уборки зерновых. Жатвенные машины
- •Применение машин для молотьбы
- •8.7.Развитие техники транспорта
- •8.7.1.Возникновение чугунно-конных дорог
- •8.7.2.Изобретение паровоза. Развитие железнодорожного транспорта
- •8.7.3.Возникновение и развитие парового водного транспорта
- •8.8.Изменения в технике связи
- •8.9.Новое в области светотехники. Прогресс в полиграфии. Создание фотографии
- •8.9.1.Технический прогресс в полиграфии
- •8.9.2.Создание фотографии
- •8.10.Изобретения в области военной техники
- •8.11.Изобретения и открытия, ставшие основой технического прогресса в последующий период развития техники
- •8.12.Состояние естествознания
- •8.12.1.Математика
- •8.12.2.Астрономия
- •8.12.3.Механика
- •8.12.4.Термодинамика
- •8.12.5.Электричество, магнетизм
- •8.12.6.Химия
- •8.12.7.Геология
- •8.12.8.Биология
- •8.13.Заключение
- •8.14.Контрольные вопросы:
- •9.Развитие науки и техники в период монополистического капитала (вторая половина XIX – начало XX вв.)
- •9.1.Развитие системы машин на базе электропровода
- •9.2.Требования, предъявляемые транспортом, строительством и военным делом к машинной индустрии Развитие транспорта
- •9.2.1.Железнодорожный транспорт
- •9.2.2.Водный транспорт
- •9.3.Строительное дело
- •9.3.1.Изменение конструктивных форм зданий
- •9.3.2.Развитие техники транспортного строительства
- •9.3.3.Механизация строительных работ
- •9.3.4.Военное дело
- •9.4.Развитие металлургии
- •9.4.1.Усовершенствование доменного производства
- •9.4.2.Изобретение бессемеровского способа получения стали
- •9.4.3.Разработка мартеновского способа получения стали
- •9.4.4.Создание томасовского способа получения стали
- •9.4.5.Новая техника проката
- •9.4.6.Возникновение науки о строении металлов
- •9.4.7.Развитие цветной металлургии
- •9.4.8.Общее состояние металлургии в конце XIX - начале XX вв.
- •9.5.Развитие химической технологии
- •9.5.1.Новые методы производства соды
- •9.5.2.Создание нефтеперерабатывающей промышленности
- •9.5.3.Проникновение химии в основные отрасли техники
- •9.6.Развитие техники горного дела
- •9.6.1.Развитие техники разведки полезных ископаемых
- •9.6.2.Изменение техники проходки горных выработок
- •9.6.3.Механизация процессов разрушения горных пород
- •9.6.4.Технический прогресс в механическом комплексе горных предприятий
- •9.7.Развитие техники машиностроения
- •9.7.1.Особенности его развития
- •9.7.2.Развитие станкостроения
- •9.7.3.Внедрение электропривода в машиностроение
- •9.8.Развитие науки о металлообработке
- •9.8.1.Изобретение электрической сварки металлов
- •9.9.Технический прогресс в энергетике и электротехнике. Особенности развития энергетики
- •9.9.1.Создание электрического освещения
- •9.9.2.Разрешение проблемы передачи электроэнергии на расстояние
- •9.9.3.Технический прогресс в теплоэнергетике
- •9.9.4.Повышение экономичности электростанций
- •9.10.Изобретение новых отраслей техники
- •9.10.1.Изобретение двигателя внутреннего сгорания. Создание самолета
- •9.10.2.Изобретение телефона, фонографа, кинематографа
- •9.10.3.Изобретение радио
- •9.11.Развитие военной техники
- •9.11.1.Артиллерийское и пехотное вооружение
- •9.11.2.Взрывчатые вещества
- •9.11.3.Новые типы боевых машин
- •9.11.4.Военное судостроение
- •9.12.Состояние естествознания
- •9.12.1.Математика
- •9.12.2.Астрономия
- •9.12.3.Механика
- •9.12.4.Физика
- •9.12.5.Биология
- •9.13.Общественные аспекты эволюции естествознания
- •9.14.Контрольные вопросы:
- •10.Создание физических основ электроники. Развитие элементной базы в конце хiх в.-1960-е гг. (см. Документы №№ 64-102 хрестоматии)
- •10.1.История открытий, опыты по электричеству и магнетизму, создание теории электромагнитного поля, квантовая механика, электротехника, полупроводники,
- •10.1.1.Создание электромагнитной теории
- •10.1.2.Квантовая теория света
- •10.1.3.Исследования полупроводников
- •10.1.4.Первые электронные приборы
- •10.1.5.Предыстория телевидения
- •10.1.6.Предыстория оптической связи
- •10.1.7.Предыстория компьютеров
- •10.2.Полупроводниковые приборы - элементная база электроники и вычислительной техники (1940 - 1960 гг.)
- •10.2.1.Роль Второй мировой войны в развитии электроники
- •10.2.2.Послевоенная электроника
- •10.2.3.Изобретение транзистора
- •10.2.4.Интегральные схемы
- •10.2.5.Изобретение лазера
- •10.2.6.Компьютеры
- •10.2.7.Становление волоконной оптики
- •10.3.Контрольные вопросы:
- •11.История развития микроэлектроники и оптоэлектроники (1960 - 2000 гг.) (см. Документы №№ 103-116 хрестоматии)
- •11.1.Становление микроэлектроники и оптоэлектроники (1960-1980 гг.)
- •11.1.1.Интегральные и сверхбольшие интегральные схемы
- •11.1.2.Компьютеры на микроэлектронной элементной базе
- •11.1.3.Оптоэлектроника
- •Создание гетеролазера
- •Разновидности оптоэлектронных приборов
- •11.1.4.Становление волоконно-оптических линий связи волс
- •11.1.5.Электронная промышленность в ссср
- •11.2.Современная микроэлектроника и оптоэлектроника (1980- 2004 гг.)
- •11.2.1.Новейшие микроэлектронные технологии
- •11.2.2.Современные компьютеры и супер-эвм
- •11.2.3.Системы технического зрения
- •11.2.4.Волоконно-оптические линии связи
- •11.3.Контрольные вопросы:
- •12.Становление современной атомной и ядерной фи-зики. Создание ядерных технологий (см. Документы №№ 117-128).
- •12.1.Начало формирования атомарных представлений о строении материи
- •12.2.Первые попытки классификации атомов вещества и определения их размеров
- •12.3.Броуновское движение. Его роль в развитии представлений молекулярно-кинетической теории строения вещества
- •12.4.Механистическая картина Мира и новые научные от-крытия на рубеже XIX и XX вв.: рентгеновские лучи, естественная и искусственная радиоактивность
- •12.4.1.Механистическая картина мира
- •12.4.2.Открытие рентгеновских лучей, естественной и искусственной радиоактивности
- •12.5.Создание модели и первой теории строения атома. Планетарная модель атома э. Резерфорда. Теория атома водорода н. Бора
- •12.6.Ядерные реакции. Теоретическое обоснование ядерных реакций
- •Цепная реакция. Эксперимент
- •Добыча урана в промышленных масштабах
- •Критическая масса
- •Создание циклотрона
- •Начало работ по разработке атомного оружия
- •12.7.Формирование современной естественно-научной картины мира. Корпускулярно-волновой дуализм материи
- •12.7.1.Формирование современной естественнонаучной картины Мира
- •12.7.2.Эксперимент как критерий истины
- •12.7.3.Прикладное значение методологии познания
- •12.7.4.Диалектическое единство противоположностей
- •12.7.5.Философские проблемы
- •12.7.6.Классическое философское наследие
- •12.7.7.От метафизики к динамике
- •12.7.8.Вклад философии в формирование квантовой физики
- •12.7.9.Вопросы детерминизма в квантовой физике
- •12.8.Контрольные вопросы:
- •13.Использование современных ядерных технологий (см. Документы №№ 129-142 хрестоматии)
- •13.1.Использование рентгеновских лучей
- •13.2.Ионизирующие излучения. Дозиметрия.
- •13.3.Санитарные нормы. Гигиенические нормативы нрб-96.
- •13.4.Радиоуглеродная диагностика (радиоуглеродное датирование)
- •13.5.Атомные реакторы
- •13.6.Политические аспекты создания и распространения атомного оружия
- •13.7.Использование ядерных реакций для создания новых источников энергии
- •13.8.Космические корабли с ядерными двигателями
- •13.9.Контрольные вопросы:
- •14.Глава 14. Транспортная система в XX в.
- •14.1.Значение и краткая характеристика двигателей внутреннего сгорания
- •14.2.Развитие автомобильной и других областей техники на базе двигателей внутреннего сгорания
- •14.3.Трамвай, троллейбус
- •14.4.Железнодорожный транспорт
- •14.5.Суда и корабли
- •14.6.Газовые турбины и их применение
- •14.7.Развитие авиационной техники
- •14.8.Контрольные вопросы:
- •14.9.Заключение
- •Оглавление
13.3.Санитарные нормы. Гигиенические нормативы нрб-96.
Допустимые мощности дозы при внешнем облучении все-го тела от техногенных источников для помещения для лиц, ра-ботающих с ионизирующими излучениями и проходящими регу-лярный медицинский и дозиметрический контроль, 50 .
В России эти нормы более строгие, чем во всех других странах Европы.
13.4.Радиоуглеродная диагностика (радиоуглеродное датирование)
Наша планета не является замкнутой системой. Все зем-ные объекты взаимодействуют с космическими объектами и под-вергаются их воздействию. Поэтому изучение процессов и явле-ний, происходящих на Земле, невозможно без исследований кос-мических явлений и объектов и результатов их воздействия на земные поверхности. Закономерности развития космической и земной среды взаимосвязаны. Основной трудностью при этом является длительная протяжённость космических и земных собы-тий во времени. Однако для понимания причинной обусловлен-ности процессов датирование различных событий является обяза-тельным условием. Для этих целей успешно используются запи-си о протекании полярных сияний; образовании колец древесных стволов, слоёв отложений торфа; распространенности нуклидов в различных слоях земли; некоторых процессах в биосфере, харак-тере и скорости протекания геологических процессов, демогра-фических процессах и т. п. Но более простым и точным способом определения возраста является радиоуглеродный метод (радиоуг-леродное датирование). Он широко применяется, т.к. объектами его использования могут быть углеродосодержащие материалы, в том числе остатки костной ткани любого возраста, раститель-ной ткани или результаты их биохимической эволюции: древес-ный угль, нефть, газ, янтарь. Для проведения анализа необходи-мы малые массы. Например, для датирования в интервале от примерно 70 000 до н.э. до приблизительно 1600 н.э. достаточно одного грамма вещества. Датировка проводится неоднократно и результатом является усреднённое значение временного интерва-ла.
Появление в 1949 г. радиоуглеродного датирования про-извело переворот в археологии, криминалистике и других сферах человеческой деятельности, предоставив в распоряжение недоро-гой, надежный и доступный для широкого применения метод по-лучения абсолютных дат.
Радиоактивный углерод (изотоп углерода С-14) во встречающихся в природе веществах был впервые найден в 1934 г. учеными Йельского университета. В 1940 г. в университете Чика-го, У. Либби продемонстрировал его использование для опреде-ления возраста археологического материала путем измерения ра-диоактивного излучения находящегося в нем радиоактивного уг-лерода. Вслед за ним многие исследователи использовали метод радиоуглеродного определения возраста. В 1960 г. У. Либби была присуждена Нобелевская премия.
Радиоуглеродное датирование - метод датирования органических материалов путем измерения содержания радиоактив-ного изотопа углерода 14С. Этот метод широко применяется в археологии и науках о Земле.
Земля постоянно подвергается воздействию космического излучения, значительной частью которого являются потоки эле-ментарных частиц (корпускулярное излучение). Взаимодействие этих частиц с атомами азота (большая составляющая земной ат-мосферы) приводит к тому, что ряд атомов превращается в изо-топ углерода С-14. Количество образуемого изотопа 14С в земной атмосфере составляет около 2 атомов за 1 с на 1 см поверхно-сти. Радиоактивный углерод входит в состав углекислого газа , который опускается в нижние слои атмосферы и переме-шивается с обычной углекислотой. Путем фотосинтеза радиоуг-лерод связывается в органических веществах и попадает в клетки растений и животных. Этот процесс носит циклический характер и протекает со сдвигом во времени. Результатом является почти мгновенное образование радиоактивного углерода в атмосфере и гораздо более позднее появление углерода в биосфере.
В атмосфере Земли постоянно находится около 80 т. ра-диоуглерода. Удельная активность углерода в обменной системе составляет около 15 распадов за 1 мин на 1 г углерода. За 80 лет распадается около 1% первоначального числа атомов 14С. Коле-бания солнечной активности, значительный объем сжигаемого ископаемого топлива и испытания ядерного оружия обуславли-вают колебания содержания углерода в биосфере. К модуляциям образования радиоактивного углерода приводит и магнитное по-ле Солнца. Это ограничивает возможности применения метода, что оборачивается ошибкой в определении возраста в несколько процентов (или в несколько сотен лет).
Если в живых организмах поддерживается динамическое равновесие – количество углерода, образующегося в единицу времени, равно количеству углерода, распадающегося или пере-ходящего в другую форму, то смерть лишает живую материю способности поглощать радиоуглерод. Равновесие нарушается. В мертвых органических тканях происходит распад атомов радио-углерода. Период полураспада углерода составляет 5730 лет. Значит, в течение первых 5730 лет половина исходного числа нуклидов 14C превращаются в атомы 14N. Спустя еще один пери-од полураспада содержание нуклидов 14С составляет всего 1/4 их исходного числа, по истечении следующего периода полураспада – 1/8 и т.д. В итоге содержание изотопа 14C в образце можно со-поставить с кривой радиоактивного распада и таким образом ус-тановить промежуток времени, истекший с момента гибели орга-низма (его выключения из кругооборота углерода). Чтобы учесть влияние изменений начального содержания 14С, можно использо-вать данные дендрохронологии о содержании 14C в древесных кольцах.
В 1961 г. М. Таммерс в Гиф-сюр-Ивет (Франция) предста-вил LSC-метод (Liquid Scintillation Counting) радиоуглеродного определения возраста. Этот метод в 1970 г. стал общепринятым для радиоуглеродного определения возраста. Метод жидкостной сцинтилляции превзошел возможности университетских лабора-торий. Полученный из образца углеродсодержащий газ раство-ряют в жидкости, добавляют сцинтиллятор, молекулы которого поглощают энергию электронов, испускающихся при распаде радионуклидов 14С. Сцинтиллятор сразу переизлучает накоплен-ную энергию в виде световых вспышек. Свет можно регистриро-вать и измерять его интенсивность с помощью фотоумножителя.
В 1979 г. М. Таммерс выступил одним из основателей Beta Analytic, частной лаборатории радиоуглеродного определе-ния возраста методом LSC, обладающей большими возможно-стями и призванной удовлетворить запросы мирового научного сообщества. Одновременно с открытием и изучением радиоугле-рода, для целей ядерных исследований в национальных лабора-ториях и исследовательских институтах были введены в действие ускорители высоких энергий (AMS). Теоретически было уста-новлено, что эти приборы могут быть использованы для радиоуг-леродного определения возраста. К 1975 г. масс-спектрометрические исследования уже были достаточно развиты. Преимущество AMS перед LSC заключается в использовании в 1000 раз меньшего количества материала, необходимого для ана-лиза. В 1977 г. радиоуглерод был помещен в AMS . Таким обра-зом образовалось новое направление - радиоуглеродное опреде-ление возраста с помощью AMS. Даты, полученные с помощью AMS, согласованы с более чем 85000 результатами радиометрии, полученными более чем за 20 лет.
Результаты измерений содержания 14С в образцах, охва-тывающих последнее тысячелетие, показывают значительные колебания его содержания в различных тканях и образцах с пе-риодом в несколько десятков лет. Такие длительные отклонения от среднего значения концентрации 14С коррелируют с низкой солнечной активностью. В XVII - XVIII вв. в излучении Солнца, согласующемся с повышением уровня 14С во всех исследованных образцах, установлено резкое ослабление солнечных пятен (ма-ундеровский минимум). Подобная корреляция солнечной актив-ности и концентрации радиоуглерода описана в XV - XVI вв. (минимумом Шперера), в XIII - XIV вв. (минимумом Вольфа).
Каждый из этих минимумов отстоит друг от друга в сред-нем на 200 - 210 лет. Минимумы содержания 14С могут быть свя-заны с высокой солнечной активностью. Например, минимум концентрации 14С, приходящийся на период средневековой эпохи потепления в XII - XIII вв., свидетельствует о высокой активно-сти Солнца.
Значение радиоуглеродного датирования (радиоуглерод-ная калибрация) особенно возрастает в случае отсутствия каких-либо исторических данных. Так, в Европе, Африке и Азии ранние следы первобытного человека датируются вне временных отрез-ков, поддающихся радиоуглеродному датированию, т.е. оказы-ваются старше 50000 лет. В то же время, в рамки радиоуглерод-ного датирования попадают начальные этапы организации обще-ства и первые постоянные поселения, а также древнейшие города и государства.
Метод радиоуглеродного датирования оказался эффек-тивным при работе с хронологической шкалой древних культур. Датирование археологических артефактов позволило провести сравнение хода развития культур и обществ; определить времен-ную последовательность появления и освоения орудий труда раз-личными группами людей, возраст поселений и скорость заселе-ния территорий, прокладывания торговых путей.
Радиоуглеродное датирование имеет универсальный ха-рактер. Его можно использовать для получения знаний о круго-вороте воды и других веществ в природе, изменении климата в прошлые эпохи, определении времени протекания ледниковых периодов. Так, радиоуглеродный анализ остатков деревьев, со-хранившихся в наступавшем леднике, показал, что последний холодный период на Земле завершился примерно 11 000 лет на-зад.
Метод широко применяется в археологии и геологии чет-вертичного периода, т.к. это наилучший из изотопных хрономет-ров. Радиоуглеродное определение возраста требует только непо-средственных измерений естественного радиоуглерода в иссле-дуемых и стандартных образцах, в то время, как другие методы включают в себя предположения, базирующиеся на неизвестных фактах. Как правило, радиоуглеродный метод сопровождается параллельным датированием и другими способами. Непрерывная последовательность годовых колец одного дерева может охваты-вать 500 лет у дуба и более 2000 лет у секвойи. В горных районах с малым количеством осадков и высокими температурами (пус-тыни и полупустыни) на северо-западе США и в торфяных боло-тах Ирландии и Германии были обнаружены пласты со стволами мертвых деревьев разных возрастов. Эти находки позволяют объ-единить сведения о колебаниях концентрации 14С в атмосфере на протяжении почти 10000 лет.
Радиоуглеродное датирование используется и для пред-сказания сроков эксплуатации. При возрастании численности по-пуляции требования к водоносным горизонтам заметно возрас-тают. Перерасход потребления воды может привести к ограни-ченному восстановлению и даже гибели популяции, оказать сильное влияние на территории, значительно удаленные от зон водосбора. При постоянном мониторинге радиоуглеродного воз-раста воды можно распознать истощение до того, как процесс выйдет из-под контроля.
Привязанное ко времени наблюдение радиоуглерода в ис-точниках может обнаружить как стабильность, так и изменения источника в водозаборнике. Ежегодное уменьшение возраста вод говорит о просачивании "молодых" вод с верхних горизонтов. Это может быть вызвано, например, перерасходом источника или бурением дополнительных скважин в других местах. Это показа-тель того, что загрязненные поверхностные воды могут проник-нуть в горизонты питьевой воды. Определение радиоуглерода может быть сделано без применения каких-либо примесей к во-доносному горизонту, а также до того, как загрязнения достигнут источника.
Радиоуглеродный метод является наиболее информативным для детальных исследований природных процессов на вре-менных шкалах, охватывающих несколько последних десятков тысяч лет. Значительные возможности использования радиоугле-рода в целях решения экологических проблем, связанных с за-грязнением всех оболочек Земли углекислым газом при сжигании ископаемого топлива или во время взрывов атомных бомб.
Радиоуглеродный метод относится к инновационным ме-тодам контроля техногенной среды. Метод радиоуглеродной да-тировки является методом неразрушающего контроля.