
- •1. Предмет микроэлектроники, основные понятия и определения. Классификация имс.
- •2.Общая классификация основных типов логических элементов. Сравнительная характеристика. Реализация базовых логических функций с помощью диодных ключей
- •3.Особенности структуры n-p-n бп транзисторов имс с изоляцией на основе n-p перехода. Влияние общей подложки на работу биполярных транзисторов имс.
- •4 . Диэлектрическая изоляция элементов биполярных имс. Имс с комбинированной изоляцией.
- •5. Интегральные транзисторы типа p-n-p. Основные параметры и особенности структуры.
- •6 . Многоэмиттерные транзисторы имс. Принцип действия.
- •7.Имс повышенной степени интеграции. Многоколлекторные транзисторы.
- •8 .Использование выпрямляющего контакта металл-полупроводник для увеличения быстродействия биполярных транзисторов. Транзисторы с диодом Шоттки.
- •9.Диодные структуры в микроэлектронике. Сравнительная характеристика. Влияние подложки имс на параметры и характеристики интегральных диодов и стабилитронов.
- •20. Конденсаторы и индуктивные элементы в микроэлектронике.
- •22. Физические ограничения в микроэлектронике. Электромиграция в имс. Влияние межэлементных соединений на работу имс. Понятие задержки импульса.
- •23. Сравнительная характеристика подложек на основе кремния и арсенида галлия. Структура и принцип действия полевых транзисторов с управляющим переходом металл-полупроводник.
- •24. Гетероструктуры на основе арсенида галлия. Явления сверхинжекции в гетеропереходах. Гетеропереходные биполярные транзисторы.
- •25. Понятие двумерного электронного газа. Использование гетероперехода при создании полевых приборов. Hemt транзистор на основе арсенида галлия.
- •26. Отличительные особенности структур псевдоморфных и метаморфных hemt транзисторов. Перспективы использования нитрида галлия для формирования гетероструктур.
- •27. Применение пьезоэффекта в радиоэлектронике. Принцип действия основных приборов пьезоэлектроники.
- •28.Акустоэлектрический эффект. Приборы на основе поверхностно-акустических волн. Акустоэлектрические усилители.
28.Акустоэлектрический эффект. Приборы на основе поверхностно-акустических волн. Акустоэлектрические усилители.
Возникновение в металле или полупроводнике тока или ЭДС под действием ультразвуковых волн называют акустоэлектронным эффектом. Акустоэлектронный эффект представляет собой взаимодействие ультразвуковых волн частотой от 10^7 до 10^13 Гц с электронами проводимости в металлах или полупроводниках.
Действие ультразвуковых волн состоит в том, что они вызывают колебания кристаллической решетки, а это приводит к изменению напряженности внутрикристаллических полей, которые, в свою очередь, изменяют свое действие на электроны проводимости, поэтому акустоэлектронное взаимодействие называют электрон-фононным взаимодействием.
При воздействии на кристалл внешнего электрического поля, создающего дрейф электронов в направлении распространения звуковой волны, возможны два случая преобразования: если скорость дрейфа электронов меньше скорости волны, то её энергия поглощается электронами и волна затухает, а если больше, то электроны отдают свою энергию волне и её амплитуда возрастает, т. е. происходит усиление волны. Коэффициент усиления может достигать десятков дБ.
Приборы на основе акустоэлектрического эффекта могут использоваться для преобразования и обработки сигналов (задержка сигналов во времени или изменение их длительности, частотные и фазовые преобразования, усиление и модуляция амплитуды, кодирование, декодирование, интегрирование и т.д.). На их основе создаются пассивные элементы (линии задержки, фильтры) и активные (усилители, генераторы, модуляторы). Такие устройства на пьезокерамике (ниобат лития, перманганат висмута) позволяют получать в ряде случаев лучшие результаты, чем обычно.
Акустоэлектрический преобразователь - это устройство, преобразующее акустическую энергию (т. е энергию упругих волн в воздушной среде) в электромагнитную энергию в схемах тех устройств, в которых находятся акустоэлектрические преобразователи(или наоборот, энергию электромагнитных волн в акустическую).