
- •1. Основные понятия и определения.
- •1.1. Производственный и технологический процессы
- •1.2. Виды производства
- •1.3. Структура технологического процесса
- •1.4. Изделие как объект эксплуатации
- •1.4.1. Служебное назначение изделия
- •1.4.2. Изделие как объект технологического процесса
- •Деталей: 1 - корпус компрессора; 2 - коленчатый вал; 3 - шатун; 4 - поршень;
- •1.4.3. Качество изделия
- •2. Показатели качества изделия
- •2.1. Свойства материалов
- •Сравнительные данные по прочности материалов [1]
- •2.2. Геометрическая точность изделия и детали
- •2.2.1. Размер, допуски на размер
- •2.2.2. Шероховатость поверхности
- •Поверхности
- •А, б ‑ схемы контакта сопряженных деталей по образующей (вдоль оси) и по окружности; в, г ‑ реальный и идеализированные графики износа во времени
- •Рекомендации по обозначению шероховатости
- •2.2.3. Точность формы поверхностей
- •2.2.4. Точность взаимного расположения поверхностей
- •2.3. Технологичность конструкции деталей и изделия
- •Но менее технологичная конструкция подшипника скольжения
- •По стадиям проектирования
- •3. Методы получения заготовок
- •3.1. Основные факторы, влияющие на выбор способа получения заготовки:
- •3.1.1. Характер производства
- •3.1.2. Материалы и требования, предъявляемые к качеству детали
- •3.1.3. Размеры, масса и конфигурация детали
- •3.1.4. Качество поверхности заготовок, обеспечение заданной точности
- •3.1.5. Возможности имеющегося оборудования
- •3.2. Технологии получения заготовок
- •3.2.1. Литье
- •3.2.2. Обработка давлением
- •Методы правки проката и заготовок
- •3.2.3. Сварные заготовки
- •3.2.4. Другие методы получения заготовок
- •4. Погрешности при производстве изделий
- •4.1 Общие положения
- •4.2. Неточность станков, приспособлений и режущего инструмента
- •4.3. Действие рабочих нагрузок
- •В трехкулачковом патроне. Форма кольца: а – до закрепления; б – зажатого в патроне;
- •4.4. Износ станков, приспособлений и режущих инструментов
- •4.5. Неточность формы заготовок
- •4.6. Внутренние напряжения в материале заготовки
- •4.7. Тепловые деформации технологической системы
- •4.8. Базы и погрешности базирования
- •4.8.1 Общие положения
- •4.8.2 Способы установки заготовки
- •4.8.3. Точность при смене баз
- •4.8.4. Пересчет размеров и допусков при смене баз
- •5. Технология сварки и пайка металлов
- •5.1 Способы сварки плавлением
- •5.1.1.Ручная дуговая сварка металлическим электродом с покрытием
- •5.1.2. Автоматическая сварка под флюсом
- •5.1.3. Сварка плавящимся электродом
- •5.1.4. Сварка неплавящимся электродом
- •5.1.5. Плазменная сварка
- •К недостатка следует отнести: сложность конструкции плазматронов; высокие требования к плазмообразующему газу.
- •5.1.6. Электронно-лучевая сварка (элс)
- •5.1.7. Лазерная сварка
- •5.1.8. Газовая сварка
- •5.2. Дефекты и контроль качества сварных соединений
- •5.2.1. Общие сведения и организация контроля
- •5.2.2. Дефекты сварных соединений и причины их возникновения
- •5.2.3. Методы неразрушающего контроля сварных соединений
- •5.2.4. Методы контроля с разрушением сварных соединений
- •5.3. Сварки металлов
- •5.3.1 Основные сведения свариваемости низколегированных сталей
- •5.3.2 Сварка аустенитных сталей
- •5.3.3. Сварка цветных металлов и их сплавов
- •Свойства некоторых цветных металлов
- •5.3.4. Технология пайки металлов
- •6. Проектирование технологических процессов изготовления деталей и машин
- •6.1. Основы проектирования технологических процессов
- •6.2. Технологическая документация
- •6.2.1. Типы технологических карт
- •6.2.2. Оформление маршрутных карт
- •6.2.3. Оформление операционных карт
- •Информация по дополнительным графам операционной карты
- •6.2.4. Оформление карт эскизов
- •6.3. Типизация и унификация технологических процессов
- •6.4. Унификация деталей машин
- •6.5. Определение припусков на механическую обработку
- •И внутренней (б) поверхностей
- •6.6. Технология сборочных процессов
- •7. Типовые маршруты изготовления деталей различных классов
- •7.1. Типовые маршруты изготовления валов
- •7.2. Типовые маршруты изготовления втулок
- •Маршрут обработки втулки
- •7.3. Особенности технологии изготовления отдельных деталей
- •7.3.1 Технология изготовления обечаек
- •7.3.2.Правка
- •7.3.3. Очистка
- •7.3.4 Раскрой и разметка заготовок
- •7.3.5. Подготовка кромок под сварку
- •7.3.6. Гибка листового проката
- •7.3.7. Сборка обечаек
- •7.4. Технология изготовления трубных решеток
- •Характеристика методов выполнения отливок разные обозначения
- •Характеристика методов обработки заготовок давлением
- •Библиографический список
- •Оглавление
3.2.3. Сварные заготовки
Сварные заготовки в большинстве случаев применяют для изготовления стальных деталей сложной конфигурации, когда из одного куска проката заготовку получить нельзя или невыгодно, например, при изготовлении ступенчатых валов с большой разницей между диаметрами ступеней. Сварными делают пустотелыми дисковые поршни больших диаметров. Известны попытки получения сварных заготовок блок–картеров компрессоров, корпусов турбокомпрессоров, станин металлорежущих станков.
При значительном упрощении технологии изготовления элементов сварной конструкции по сравнению с технологией литья или ковки цельной заготовки сварная заготовка получается более легкой. Ее наиболее нагруженные элементы могут быть выполнены из легированной стали. Трудоемкость последующей обработки резанием комбинированных заготовок сокращается на 20 – 40 %.
3.2.4. Другие методы получения заготовок
Металлокерамические заготовки изготовляют из металлов, не смешиваемых в расплавленном виде (железо – свинец; вольфрам – медь) или композиций, состоящих из металлов и неметаллов (медь – графит и др.). Заготовки этих деталей получают прессованием смесей порошков в пресс-формах под давлением 1000 – 6000 кгс/см2 с последующим спеканием. Порошки получают измельчением металлов в шаровых мельницах и бегунах (частицы размером 0,04 – 0,10 мм), в вихревой мельнице (частицы размером 0,02 – 0,04 мм), а также путем распыления легкоплавких металлов в жидком виде. Прессование осуществляется на гидравлических или кривошипных прессах, а спекание – в газовых или электрических печах. Время спекания от 15 мин до 24 ч в зависимости от размеров заготовок и свойств материала. Этим методом обычно получают заготовки массой до 5 кг с точностью по 8 – 9 квалитету. Шероховатость поверхности Ra = 3,2 …6,3 мкм [9].
Для придания заготовкам более точных размеров их до спекания нередко подвергают обработке резанием или калибровке в пресс–формах. Металлокерамические заготовки подвергают чистовой и тонкой обработке металлическим инструментом. Шлифование не производят во избежание попадания частиц абразива в поры материала.
Полимерные материалы. Широкое применение нашли детали из полимерных материалов. Малая плотность, демпфирующая способность, стойкость к агрессивным средам, электротеплоизоляционные и антифрикционные свойства, простота переработки в изделия способствуют широкому применению пластмасс в машиностроении. При замене черных металлов пластмассами себестоимость массового изготовления деталей снижается в 1,5 – 3,5 раза, а при замене цветных металлов в 5 – 20 раз. Обычно пластмассы представляют собой многокомпонентные материалы, состоящие из связующего вещества, наполнителя, пластификатора, красителя, связывающего вещества, катализатора, ингибитора и других добавок. Подбором компонентов материалу придают желаемые свойства. В качестве связующего вещества применяют искусственные термопластичные и термореактивные смолы, смеси этих смол и эфиры целлюлозы.
В зависимости от наполнителя пластмассы делят на порошкообразные, волокниты и слоистые материалы.
Пластмассы с порошковым наполнителем представляют собой в основном термореактивные композиции. Наполнителем служат древесная мука, молотый кварц, тальк, молотый шлак, графит, окись алюминия, карбид кремния и другие вещества. Для деталей общего назначения (корпусы, маховики, колпачки, ручки) используют пресс-порошки из фенолоформальдегидных смол К18-2, К21-22, К17-36 и др.; пресс-порошки типа К17-36 водо– и химически стойкие, типа К21-22 электроизоляционные, К18-66 теплостойкие. Пресс-порошки всех видов перерабатывают в изделия методом горячего и литьевого прессования. Крупные изделия получают в формах с виброуплотнением. Специальными технологическими методами удастся изменять стандартные свойства пластмасс. Быстрое охлаждение прессованных изделий повышает поверхностную твердость и общую прочность материала; выдержка их в термостате повышает стабильность размеров.
Пластмассы с листовым наполнителем (текстолиты, стеклотекстолиты) термореактивны. Их поставляют в виде листов и труб. Зубчатые колеса, подшипниковые вкладыши и другие детали получают прессованием пакета заготовок из хлопчатобумажной ткани или стеклоткани, пропитанных синтетическими смолами. Фрикционные свойства, твердость, ударо– и вибростойкость, жаропрочность и технология обработки зависят от свойств наполнителей. Средний предел прочности на разрыв эпоксидных смол 100 МПа, а пластмасс с листовым наполнителем 300 – 950 МПа. Наполнитель в виде стеклянных чешуек повышает прочность стеклопластиков до 1500 МПа. Детали машин из этих пластмасс изготовляют в два этапа: сначала получают заготовку, а затем ее обрабатывают резанием.
Пластмассы с волокнистым наполнителем (хлопковая целлюлоза, асбестовое и стеклянное волокно, шерстяные очесы) также термореактивны. По прочности они уступают слоистым материалам, но превосходят их по технологичности и экономичности изготовления деталей машин. Из пластмасс с волокнистым наполнителем детали сложной формы можно изготовить методами обычного и литьевого прессования или склеиванием синтетическими клеями. Волокниты применяют в виде листов, труб, прутков.
К термопластичным пластмассам относятся те, которые при нагревании становятся вязкими, а после охлаждения вновь твердыми. Они допускают многократную переработку. Детали из поливинилхлорида, полиамида (капрон, капролон), полистирола, полиэтилена, полипропилена, полиметилметакрилата изготовляют прессованием и литьем. На экструдерах из полимеров получают заготовки для изготовления различных деталей обработкой резанием.
Пластмассы с газовоздушным наполнителем имеют малую плотность. В зависимости от структуры их разделяют на пенопласты, поропласты и сотопласты и изготовляют на основе полиуретана, полистирола, эпоксидных смол или их модификаций. Пустотелая структура получается химическими, физическими и механическими методами или их сочетанием. Пенопоропласты применяют в качестве теплоизоляторов, амортизирующих средств и для изготовления специальных деталей.
Учитывают при изготовлении заготовок способами центробежного литья, литья под давлением, горячей объемной штамповкой. Иногда это является определяющим моментом.
Например, наличие в кузнечном цехе ротационно-ковочных машин позволяет получить ступенчатые заготовки практически без механической обработки. То же – при наличии механических прессов двойного действия или гидравлических многоступенчатых прессов.
Мощность кузнечно-штамповочного оборудования определяет номенклатуру изготовления деталей.