
- •13.Принципы системных исследований.
- •14.Измерения в системном исследовании. Шкалы измерения.
- •15.Моделирование в системном анализе. Требования к модели.
- •16.Классификация методов, применяемых для исследования систем.
- •17.Основные методы системного анализа.
- •18.Декомпозиционный метод в системном анализе. Принципы и основания декомпозиции.
15.Моделирование в системном анализе. Требования к модели.
Модель - объект или описание объекта, системы для замещения (при определенных условиях предложениях, гипотезах) одной системы (т.е. оригинала) другой системы для изучения оригинала или воспроизведения его каких - либо свойств. Модель - результат отображения одной структуры на другую.
Моделирование-выявление или воспроизведение свойств одного объекта из оригинала с помощью другого объекта.
Моделирование широко применяется в практике при выполнении всех этапов системного анализа. Это дает возможность получить обширную информацию о различных сторонах функционирования системы в целом и ее отдельных элементов, исследовать устойчивость поведения системы под воздействием внешних и внутренних возмущений, исследовать зависимость конечных результатов работы системы от ее характеристик и найти оптимальный вариант. Моделирование систем - это метод, с помощью которого, варьируя в эксперименте потоки материалов или предметов через операции или процессы, можно определить влияние изменений различных переменных в системе. Моделирование представляет собой средство опытной проверки идей и представлений в условиях, которые невозможно было бы создать для реального эксперимента, учитывая связанные с этим затраты, время и риск. Это метод накопления опыта и обучения, результатом которого может быть разработка новой и лучшей системы, оценка нескольких альтернативных систем или нахождение лучшего способа функционирования заданной системы. Моделирование по существу своему является заменой практического опыта, который иначе был бы слишком дорог, продолжителен и рискован. Цели моделирования систем заключаются в том, чтобы расширить понимание систем и их сущность, оценить новые идеи и понятия, выразить количественно, как можно большее число факторов и зависимостей, дать возможность исследователям сосредоточить внимание на задачах, не поддающихся формализации, которые связаны с риском, и обучить персонал выполнению новой операции.
Первый этап моделирования - построение модели. Он предполагает наличие некоторых знаний об объекте - оригинале. На этом этапе важен вопрос о необходимой и достаточной мере сходства оригинала и модели.
Второй этап моделирования - изучение модели. Здесь модель выступает как состоятельный объект исследования. Одной из форм такого исследования является проведение экспериментов, при которых сознательно изменяются условия функционирования модели и систематизируются данные о ее поведении. Конечным результатом этого этапа является совокупность знаний о модели.
Третий этап моделирования - перенос знаний с модели на оригинал. Этот процесс проводится по определенным правилам. Знания о модели должны быть скорректированы с учетом тех свойств объекта - оригинала, которые не нашли отражения или были изменены при построении модели.
Четвертый этап моделирования - практическая проверка полученных с помощью модели знаний и их использование при построении обобщенной теории объекта, его преобразования или управления им. В итоге происходит возвращение к проблематике реального объекта.
Моделирование всегда предполагает принятие допущений той или иной степени важности. При этом должны удовлетворяться следующие требования к моделям:
Адекватность, то есть соответствие модели исходной реальной системе и учет, прежде всего, наиболее важных качеств, связей и характеристик. Оценить адекватность выбранной модели, особенно, например, на начальной стадии проектирования, когда вид создаваемой системы ещё неизвестен, очень сложно. В такой ситуации часто полагаются на опыт предшествующих разработок или применяют определенные методы.
Точность, то есть степень совпадения полученных в процессе моделирования результатов с заранее установленными, желаемыми. Здесь важной задачей является оценка потребной точности результатов и имеющейся точности исходных данных, согласование их как между собой, так и с точностью используемой модели;
Универсальность, то есть применимость модели к анализу ряда однотипных систем в одном или нескольких режимах функционирования. Это позволяет расширить область применимости модели для решения большего круга задач;
Целесообразная экономичность, то есть точность получаемых результатов и общность решения задачи должны увязываться с затратами на моделирование. И удачный выбор модели, как показывает практика, — результат компромисса между отпущенными ресурсами и особенностями используемой модели.