
- •1.Какие из простейших электрических приборов применяются в физическом практикуме? Их назначение.
- •2.Генераторы сигналов низких и высоких частот. Применение.
- •3. Типы резисторов. Их назначение в электрической цепи
- •4. Разновидности диодов. Примеры использования.
- •5. Генераторы переменного тока. Их назначение
- •7. Применение электронно-лучевых осциллографов в физическом практикуме.
- •12. Атомно-силовые микроскопы. Принцип работы.
- •13. Принцип работы оптических микроскопов. Металлография.
- •14. Ускорители. Виды.
- •15.Приборы рентгеноструктурного и рентгеноспектрального анализа.
- •17. Каков физический смысл удельного сопротивления? Укажите единицу измерения удельного сопротивления. Как зависит удельное сопротивление (сопротивление) от температуры?
- •18. Метод магнетрона для определения удельного заряда электрона (e/m)? Почему при некотором значении тока через соленоид электроны не достигают анода?
- •19. В чем состоит явление термоэлектронной эмиссии? в работе каких известных Вам приборов используют это явление?
- •20. На чем основан принцип действия биполярного транзистора? Основные носители заряда в полупроводниках р и п типов.
- •23. Как устроен триод? Какое явление лежит в основе работы триодной лампы? Для чего служит сетка? Что называется работой выхода электрона?
- •24. Какие элементы электрической цепи имеют нелинейность вольтамперной характеристики? Динамическое и статическое сопротивление. Инерционность и безынерционность сопротивлений. Добротность.
- •25. Что такое индукция магнитного поля? самоиндукция? Какие методы измерения магнитной индукции Вы знаете? От чего зависит коэффициент взаимной индукции? Эффект Холла.
- •26. Чем обусловлен сдвиг фаз между током и напряжением в цепи? Почему при резонансе напряжений Ul и Uc могут быть больше общего напряжения?
- •27. Чем обусловлены магнитные свойства парамагнетиков, диамагнетиков, ферромагнетиков? в чем различие? и как это связано с магнитной проницаемостью?
- •28. Что вы понимаете под основной кривой намагничивания? под остаточной магнитной индукцией? Что характеризует площадь петли гистерезиса?
- •31,43,45,57.Принцип работы приборов электростатической системы измерения.
- •32,50.Сформулируйте закон Джоуля-Ленца. Физический смысл закона.
- •33,47. Принцип работы приборов магнитоэлектрической системы измерения.
- •34,59.Выведите формулу индукции магнитного поля бесконечно длинного соленоида.
- •36,56. Сформулируйте теорему о циркуляции вектора в по контуру l. Пользуясь теоремой, дайте вывод формулы для индукции магнитного поля бесконечного соленоида.
- •37,52.Сформулируйте закон Био-Савара-Лапласа. Пользуясь этим законом дайте вывод формулы для индукции магнитного поля на оси кругового витка с током
- •39,60. В чем заключается явление Холла? Дайте вывод формулы для эдс Холла?
- •41,55. Принцип работы ферродинамических приборов
- •42,54. Закон Ома для электрических цепей переменного тока. Lсr – колебательный контур. Построение векторных диаграмм.
- •44. Чему равно отношение значений магнитной индукции внутри бесконечно длинного соленоида и на срезе полубесконечного соленоида?
- •46.Изложите суть графического метода расчета нелинейных цепей. Какое нелинейное сопротивление называется инерционным и какое безинерционным?
- •49. Принцип работы приборов электродинамической системы измерения.
- •51. В чем различие приборов магнитоэлектрической и электромагнитной системы?
- •53. Принцип работы индукционных приборов.
12. Атомно-силовые микроскопы. Принцип работы.
Атомно-силовой микроскоп — сканирующий зондовый микроскоп высокого разрешения. Используется для определения рельефа поверхности с разрешением от десятков ангстрем вплоть до атомарного. В отличие от сканирующего туннельного микроскопа, с помощью атомно-силового микроскопа можно исследовать как проводящие, так и непроводящие поверхности. Принцип работы атомно-силового микроскопа основан на регистрации силового взаимодействия между поверхностью исследуемого образца и зондом. В качестве зонда используется наноразмерное остриё, располагающееся на конце упругой консоли, называемой кантилевером. Сила, действующая на зонд со стороны поверхности, приводит к изгибу консоли. Появление возвышенностей или впадин под остриём приводит к изменению силы, действующей на зонд, а значит, и изменению величины изгиба кантилевера. Таким образом, регистрируя величину изгиба, можно сделать вывод о рельефе поверхности. Под силами, действующими между зондом и образцом, в первую очередь подразумевают дальнодействующие силы Ван-дер-Ваальса, которые сначала являются силами притяжения, а при дальнейшем сближении переходят в силы отталкивания. В зависимости от характера действия силы между кантилевером и поверхностью образца выделяют три режима работы атомно-силового микроскопа: контактный, полуконтактный, бесконтактный.
13. Принцип работы оптических микроскопов. Металлография.
Микроскоп - оптический прибор для получения увеличенных изображений объектов (или деталей их структуры), невидимых невооружённым глазом. Оптическая система микроскопа состоит из основных элементов — объектива и окуляра. Они закреплены в подвижном тубусе, расположенном на металлическом основании, на котором имеется предметный столик. Увеличение оптического микроскопа без дополнительных линз между объективом и окуляром равно произведению их увеличений. В современном микроскопе практически всегда есть осветительная система (в частности, конденсор с ирисовой диафрагмой), макро- и микро- винты для настройки резкости, система управления положением конденсора. В зависимости от назначения, в специализированных микроскопах могут быть использованы дополнительные устройства и системы. Металлография — направление в металловедении, классический метод исследования и контроля металлических материалов, подготовка и изучение строения структуры шлифа в оптическом микроскопе. Структуру выявляют с помощью травления, либо среза, шлифования и полирования образца. Металлографические исследования важны во многих областях промышленности.
14. Ускорители. Виды.
Ускоритель заряженных частиц — класс устройств для получения заряженных частиц (элементарных частиц, ионов) высоких энергий. Современные ускорители, подчас, являются огромными дорогостоящими комплексами, которые не может позволить себе даже крупное государство. К примеру, Большой адронный коллайдер в ЦЕРН представляет собой кольцо длиной почти 27 километров. В основе работы ускорителя заложено взаимодействие заряженных частиц с электрическим и магнитным полями. Электрическое поле способно напрямую совершать работу над частицей, то есть увеличивать её энергию. Магнитное же поле, создавая силу Лоренца, только отклоняет частицу, не изменяя её энергии, и задаёт орбиту, по которой движутся частицы. Конструктивно ускорители можно принципиально разделить на две большие группы. Это линейные ускорители, где пучок частиц однократно проходит ускоряющие промежутки, и циклические ускорители, в которых пучки движутся по замкнутым кривым (например, окружностям), проходя ускоряющие промежутки по многу раз. Можно также классифицировать ускорители по назначению: коллайдеры, источники нейтронов, бустеры, источники синхротронного излучения, установки для терапии рака, промышленные ускорители.