
- •Лекция №1
- •1. Основные положения и определения в области безопасности в чрезвычайных ситуациях
- •2. Признаки и показатели чрезвычайных ситуаций
- •2.1Классификация чрезвычайных ситуаций по масштабу последствий
- •2.2. Классификация чрезвычайных ситуаций по характеру источника
- •3.2. Федеральный Закон «о радиационной безопасности»
- •3.3. Федеральный закон «о промышленной безопасности опасных производственных объектов» № 116-фз от 20.06.1997 г.
- •Лекция №3
- •4. Источники химической опасности при авариях на химически опасных объектах Основные определения и понятия
- •Классификация опасных химических веществ
- •Классификация опасных химических веществ по токсической опасности
- •Классификация грузов опасных химических веществ
- •Очаг химического поражения
- •Критерии ингаляционной токсичности опасных химических веществ
- •2.3 Ангидрид сернистый
- •2.6 Водород мышьяковистый
- •2.8 Водород хлористый
- •2.9 Диметиламин
- •2.10 Кислота бромистоводородная
- •2.11 Метилакрилат
- •2.12 Метиламин
- •2.14 Метил хлористый
- •2.15 Метилмеркаптан
- •2.16 Нитрилакрилат
- •2.17 Окись углерода
- •2.18 Окись этилена
- •2.19 Окислы азота
- •2.21 Сероуглерод
- •2.22 Синильная кислота
- •2.23 Соляная кислота
- •2.24 Треххлористый фосфор
- •2.25 Триметиламин
- •2.30 Хлорокись фосфора
- •2.31 Хлорпикрин
- •2.32 Хлорциан
- •2.33 Этиленамин
- •2.34 Этилмеркаптан
- •2.35 Этиленсульфид
- •Лекция №9 Источники радиационной опасности при авариях на радиационно опасных объектах.
- •Радиационная безопасность. Строение атома и атомного ядра.
- •Дефект массы ядра.
- •Радиоактивность.
- •Прохождение радиоактивного излучения через вещество.
- •Лекция №10
- •Активность радионуклида
- •Поглощенная доза
- •Доза эквивалентная
- •Биологическое действие ионизирующего излучения.
- •Детерминированные радиационные эффекты.
- •Стохастические радиационные эффекты.
- •Источники ионизирующих излучений.
- •Нормирование ионизирующих излучений.
- •Основные предельные дозы.
- •Лекция №12
- •Основные регламентируемые величины и контролируемые параметры облучения населения Основные контролируемые параметры
- •Основные пределы доз
- •Ограничение облучения техногенными источниками
- •Лекция №13 Средства индивидуальной и коллективной защиты, применяемые при ликвидации последствий аварии на рхоо.
- •Средства индивидуальной защиты (сиз).
- •Мероприятия по сокращению поступления радиоактивных веществ в организм человека.
- •Радиопротекторы и йодная профилактика.
- •Лекция №14 Оценка химической обстановки в чрезвычайных ситуациях. Термины и определения
- •Эквивалентное количество вещества по вторичному облаку рассчитывается
- •Определение площади зоны заражения
- •Глубина зон возможного заражения сдяв, км
- •Определение глубины зон заражения
- •Лекция №15
- •2.По формуле (12) рассчитываем суммарное эквивалентное количество сдяв в облаке зараженного воздуха:
- •3. По таблице 3 интерполированием находим глубину зоны заражения:
- •4. По формуле (8) находим предельно возможное значение глубины переноса воздушных масс:
- •Определение площади зоны заражения
- •2. Рассчитываем площадь зоны фактического заражения по формуле (10)
- •Определение времени подхода зараженного воздуха к объекту
- •Лекция №16 Оценка радиационной обстановки
- •Приведение уровней радиации к одному времени после ядерного взрыва.
- •Пример.
- •Решение.
- •Пример.
- •Решение.
- •Определение возможных экспозиционных доз излучения.
- •Пример.
- •Решение.
- •Определение допустимой продолжительности пребывания людей на заражённой местности.
- •Пример.
- •Решение.
- •Допустимое время начала и продолжительность проведения работ на заражённой местности.
- •Пример.
- •Решение.
- •1 Смена.
- •2 Смена.
- •3 Смена.
- •Лекция №17 Определение допустимого времени начала преодоления зон радиоактивного заражения.
- •Пример.
- •Решение.
- •Определение режимов защиты рабочих, служащих и производственной деятельности объекта.
- •Определение возможных радиационных потерь рабочих, служащих, населения и личного состава формирования.
- •Пример.
- •Решение.
- •Задания к самостоятельной работе.
- •Приложения.
- •Значения коэффициента Кt для пересчёта уровней радиации на различное время после взрыва.
- •Время, прошедшее после взрыва до первого или второго измерения уровня радиации.
- •Коэффициенты ослабления экспозиционной дозы облучения различными факторами.
- •Экспозиционные дозы облучения для уровня радиации 100 р/ч на 1 час после взрыва.
Лекция №15
РАСЧЕТ ГЛУБИНЫ ЗОНЫ ВОЗМОЖНОГО ЗАРАЖЕНИЯ ПРИ РАЗРУШЕНИИ ХИМИЧЕСКИ ОПАСНОГО ОБЪЕКТА
В случае разрушения химически опасного объекта при прогнозировании глубины заражения рекомендуется брать данные на одновременный выброс суммарного запаса СДЯВ на объекте и следующие метеорологические условия: инверсия, скорость ветра –1м/с.
Эквивалентное количество СДЯВ в облаке зараженного воздуха определяется аналогично рассмотренному методу для вторичного облака (QЭ2) при свободном разливе. При этом суммарное эквивалентное количество QЭ рассчитывается по формуле:
,
(12)
где,
- коэффициенты, рассмотренные ранее.
Полученные по табл. 3 значения глубины
заражения Г
в зависимости от расчетной величины
и скорости ветра сравниваются с предельно
возможным значением глубины переноса
воздушных масс
(8).
За окончательную расчетную глубину
заражения принимается меньшее из двух
сравниваемых между собой значений.
Пример 4. На ХОО сосредоточены запасы СДЯВ, в том числе: хлора – 30 т; аммиака – 150 т; нитрила акриловой кислоты – 200 т.
Определить глубину зоны заражения в
случае разрушения объекта.
Время прошедшее после разрушения –
3 часа, температура воздуха 0
.
Решение: 1. По формуле (6) определяем время испарения СДЯВ.
;
.
2.По формуле (12) рассчитываем суммарное эквивалентное количество сдяв в облаке зараженного воздуха:
т.
3. По таблице 3 интерполированием находим глубину зоны заражения:
4. По формуле (8) находим предельно возможное значение глубины переноса воздушных масс:
Таким образом, глубина зоны заражения в результате разрушения химически опасного объекта может составить 15 км.
Решить примеры.
На ХОО сосредоточены запасы СДЯВ, в том числе: 1) диметиламина 60 т; фтора 80 т; аммиака 100 т; 2) хлорциана 80 т; сернистого ангидрида 90 т; хлора 50 т; 3) сероводорода 50 т; нитрита акриловой кислоты 150 т; 4) хлора 40 т; фтора 60 т; сероводорода 80 т; 5)аммиака 200 т; диметиламина 80 т; хлорциана 40 т; 6) сернистого ангидрида 100 т; аммиак 150 т; фтора 40 т.
Время прошедшее после разрушения объекта, 1 час; температура воздуха 20 .
Определить глубину зоны заражения в случае разрушения объекта.
Определение площади зоны заражения
Пример 5. В результате аварии на ХОО образовалась зона заражения глубиной 10 км. Скорость ветра –2 км/с, инверсия.
Определить площадь зоны заражения при времени, прошедшем после начала аварии 4 часа.
Решение: 1. Рассчитываем площадь зоны возможного заражения по формуле (9)
.
2. Рассчитываем площадь зоны фактического заражения по формуле (10)
Решить примеры. В результате аварии на ХОО образовалась зона заражения глубиной : 1) 4км; 2) 6 км; 3) 8 км; 4) 12 км; 5) 8 км; 6) 20 км. Скорость ветра: 1) 3 м/с; 2) 2 м/с; 3) 1 м/с; 4) 0,3 м/с; 5) 2 м/с; 6) 3 м/с. Конвекция. Определить площадь зоны заражения при времени, прошедшем после начала аварии: 1) 3 ч; 2) 1 ч; 3) 2 ч; 4) 4 ч; 5) 5 ч; 6) 6 ч. Вычертить зоны заражения на схеме.