
- •Орієнтовний перелік питань для підсумкового контролю знань
- •Тема 1. Математичне моделювання як метод наукового пізнання економічних явищ і процесів
- •1.1 Економетрика як наука, об’єкт, предмет, мета та задачі. Основні характеристики економічної системи як об’єкта моделювання
- •1.2 Поняття моделі. Математична модель, основні етапи процесу моделювання, класифікація моделей
- •Етапи проведення економетричних досліджень
- •Тема 2. Моделі парної регресії та їх дослідження
- •2.1 Приклади парних зв’язків в економіці
- •Модель споживання
- •Модель пропозиції та попиту
- •Найпростіша кон'юнктурна модель (модель Кейнса)
- •Виробнича функція Кобба-Дугласа
- •2.2 Парна регресія
- •2.2.1 Специфікація моделі
- •2.2.2 Визначення параметрів рівняння регресії за допомогою методу найменших квадратів
- •Тема 3. Загальна лінійна економетрична модель
- •3.1 Загальний вид лінійної економетричної моделі, її структура та етапи побудови
- •3.2 Деяка інформація про випадкові збудники
- •3.3 Умови Гауса-Маркова. Гомоскедастичні та гетероскедастичні моделі
- •Тема 4. Лінійна парна регресія
- •4.1 Загальний вид лінійної парної моделі
- •4.2 Визначення оцінок параметрів парної лінійної регресії за допомогою мнк
- •4.3 Властивості оцінок, а також залишків мнк, їх характеристика
- •4.4 Аналіз рівнянь лінійної регресії і властивості вибіркового коефіцієнту кореляції
- •4.5 Дисперсійний аналіз та поняття коефіцієнта детермінації, його властивості
- •Властивості коефіцієнта детермінації
- •4.6 Перевірка лінійної моделі на адекватність. Поняття -критерію Фішера
- •4.7 Перевірка значимості параметрів регресійної моделі та коефіцієнту кореляції
- •4.8 Побудова інтервалів довіри для параметрів регресійної моделі
- •4.9 Зона довіри для лінії регресії
- •4.10 Прогноз і інтервал довіри для прогнозу
- •4.11 Коефіцієнт еластичності
- •Тема 5. Нелінійна парна регресія
- •5.1 Загальні відомості
- •5.2 Метод лінеаризації
- •5.3 Методи обчислення невідомих параметрів нелінійних моделей
- •5.4 Перевірка адекватності квадратичного рівняння регресії
- •5.5 Довірчий інтервал і прогноз для нелінійної моделі
- •5.6 Коефіцієнти еластичності для нелінійних моделей
- •5.7 Аналіз монопольного ринку
- •Коефіцієнт еластичності попиту
- •Тема 6. Множинна регресія
- •6.1 Загальні відомості
- •6.2 Вибір та аналіз усіх можливих факторів, які впливають на процес або показник, що досліджується
- •6.2.1 Поняття про мультиколінеарність та її вплив на оцінки параметрів моделі
- •6.2.2 Порядок виявлення та усунення мультиколінеарності
- •6.2.3 Виявлення мультиколінеарності в масиві факторів за допомогою алгоритму Фаррара-Глобера
- •6.2.4 Алгоритм усунення мультиколінеарності
- •6.3 Вибір виду рівняння регресії
- •6.4 Загальна модель множинної лінійної регресії
- •6.5 Емпірична модель множинної лінійної регресії
- •6.6 Визначення коефіцієнтів рівняння множинної лінійної регресії
- •6.7 Перевірка адекватності множинної регресійної моделі
- •6.8 Прогноз і довірчий інтервал для прогнозу множинної регресії
- •Тема 7. Економетричні моделі динаміки
- •7.1 Методи моделювання часових рядів
- •7.2 Автокореляція часового ряду
- •Властивості коефіцієнта автокореляції
- •7.3 Моделювання тенденції часового ряду: згладжування та аналітичне вирівнювання
- •7.4 Автокореляція залишків в множинній регресії
- •7.4.1 Поняття про автокореляцію залишків, її природа, причини виникнення і наслідки
- •7.4.2 Визначення наявності автокореляції залишків
- •Алгоритм тесту Дарбіна-Уотсона
- •Обмеження на застосування критерія Дарбіна-Уотсона
- •Словник
- •Рекомендована література Основна:
- •Додаткова:
Тема 4. Лінійна парна регресія
4.1 Загальний вид лінійної парної моделі
Найпростішою серед лінійних економетричних моделей є модель парної лінійної регресії (або проста лінійна модель), яка описує зв’язок всього між двома економічними змінними – показниками.
Економетричною моделлю парної лінійної регресії (простою лінійною моделлю) називається регресійна модель, яка описує лінійний зв’язок між двома економічними показниками, один з яких є залежною (пояснюваною), а другий – незалежною (пояснюючою) змінною.
Виходячи з вищерозглянутих позначень для простої лінійної регресії маємо:
теоретичну (“канонічну”) модель парної лінійної регресії:
;
(4.1)
вибіркову (емпіричну) модель парної лінійної регресії:
;
(4.2)
вибіркову функцію парної лінійної регресії:
. |
(4.3) |
Рівняння
(4.3) представляє собою параметричне
рівняння прямої, тому на площині
вибірковій функції парної лінійної
регресії відповідає вибіркова (емпірична)
пряма регресії. Графічно вибіркова
функція регресії і пряма регресії для
деякої вибірки представлені на рис. 4.1.
yi
ei
b0
Y
x1
xi
xn
X |
|
Рисунок 4.1 – Парна лінійна регресія
Параметри
моделі парної лінійної регресії мають
спеціальну назву. Параметр
називається перетином,
а
– нахилом.
Математична інтерпретація цих параметрів
зрозуміла з наведеного рисунку.
В економічних дослідженнях найбільш широке використання знайшли моделі лінійної регресії, хоча це і є спрощений засіб в моделюванні реальних економічних процесів. Ґрунтовне вивчення і застосування методики побудови лінійних моделей надає необхідну теоретичну базу для створення більш складних, нелінійних моделей, які в більшій мірі відповідають реальним економічним процесам. Якщо в рівняння включено лише одну пояснюючу змінну, то одержуємо теоретичну модель, яка дістала назву парної лінійної регресії:
|
(4.4) |
Теоретичну модель для парної лінійної регресії можна записати наступним чином:
|
(4.5) |
або у векторно-матричній формі, співвідношення (4.4) буде мати такий вид:
|
(4.6) |
де
|
Для визначення
теоретичних коефіцієнтів
та
необхідно буде використати всі значення
(
,
)
змінних
і
генеральної сукупності, що практично
здійснити не можливо. Тому переходимо
до побудови так званого емпіричного
рівняння на базі інформації, одержаної
із статистичної вибірки.
Емпіричне рівняння регресії має вид:
|
(4.7) |
який аналогічно із теоретичною моделлю, запишемо у векторно-матричній формі:
, |
(4.8) |
де
|