Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Гребной Шпоры.docx
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
4.17 Mб
Скачать

56 Гэу океанографического судна "Аранда"

Океанографическое судно "Аранда" финской постройки имеет дизель-электрическую гребную установку переменного тока. На судне установлен кормовой ГЭД переменного тока (синхрон­ный двигатель), который питается от тиристорного преобразова­теля скорости с непосредственной связью (циклоконвертор). Частота тока, подаваемого к ГЭД от циклоконвертора, плавно регулируется в диапазоне 0 -г 15 Гц. Скорость вращения ГЭД можно регулировать в диапазоне от 0 до 18,8 рад/с (180 об/мин). Мощность ГЭД устанавливается свободно, даже более 10 МВт рис. 14.4

Д ополнительно на судне имеются три электропривода постоянного тока с тиристорным управлением, в том числе один ЭД для носового гребного механизма и два ЭД подруливающих устройств. Носовой ГЭД постоянного тока, мощностью 630 кВт, на­пряжением 450 В, током 1500 А, скоростью вращения 0ч 29,3рад/с (0 280 об/мин). Его система управления работает по принципу регулирования по мощности. Два ЭД подруливающих устройств [215 кВт, 440 В, 557 А, 0 ч- 150,5 рад/с (0 1400об/мин)], их система управления работает по принципу регулирования скорости (по якорному напряжению).

Циклоконвертор состоит из трех встречно-параллельно включенных трехфазных тиристорных мостов. Каждый половинный мост формирует полупериод выходного напряжения. Управляющее напряжение тиристорных мостов имеет синусоидальную форму и формируется с помощью микро-ЭВМ. При подаче нагрузки циклоконвертор имеет coscp близкий к единице во всем рабочем диапазоне. На стороне сети изменяется в зависимости от требуемого двигателем напряжения в диапазоне от 0,7 до 1,0. Питающее напряжение циклоконвертора - 400 В при частоте 50 Гц, напряжение на выходе 0 340 В при частоте 15Гц, выходной ток - 2000 А.

Для управления системой "циклоконвертор - синхронный электродвигатель" применяется векторная система управления, в которой управляющим элементом является сам двигатель. Действует она с использованием микро-ЭВМ.

Развиваемый электродвигателем момент в векторном выражении

,

где I - вектор тока; - вектор потока воздушного зазора электродвигателя.

Оптимальное регулирование происходит в тех случаях, когда вектор I перпендикулярен вектору . Установленный на роторе указатель положения дает непрерывную информацию о положении ротора для микро-ЭВМ в цифровой форме. На микро-ЭВМ вычисляются заданные значения выходного тока циклоконвертера, при этом используется модель ЭД, запрограммированная ЭВМ. Оптимальный результат достигается с точностью до 02,0% во всем рабочем диапазоне двигателя. Электродвигатель работает при =1, что обеспечивается при оптимальном результате управления.

Общий коэффициент нелинейных искажений, вызываемых циклоконвертером,(11 12%) меньше, чем коэффициент нелинейных искажений у обычного преобразователя постоянного тока (18 22%).

57 Сравнительный анализ схем управления гэу

В ГЭУ с синхронным турбогенератором и асинхронным ГЭД, управляемой по схеме вентильного каскада или машины двойного питания, изменение скорости вращения гребного электродвигателя происходит с помощью преобразователя частоты в цепи ротора ЭД, а реверсирование - с помощью контактного или бесконтактного реверсора в цепи статора. Применяются гребные электроустановки с двойным машинно-вентильным каскадом, состоящим из двух асинхронных ЭД и преобразователя частоты. Обмотка статора первого ЭД питается от генераторов. Обмотки роторов соединены последовательно, обмотка статора второго ЭД соединена с ПЧ.

В ГЭУ с синхронным турбогенератором, ТПЧ и синхронным или асинхронным ГЭД регулирование скорости вращения и реверсирование двигателя осуществляется с помощью преобразователя. Величины напряжения ГЭД и генератора выбираются независимо друг от друга. Возможно использование как НПЧ, так и ПЧ со звеном постоянного тока, в которых применяется импульсное и широтно-импульсное регулирование в цепи постоянного и переменного тока, импульсно-фазовое управление напряжением полупроводниковых вентилей.

В гребных электрических установках с преобразователями частоты количество турбогенераторов не зависит от количества ГЭД. Синхронные генераторы могут работать на общие шины или на две системы шин для обеспечения большей надежности установки. В ГЭУ переменного тока возможно осуществление отбора мощности от главных генераторов для питания общесудовых потребителей. Все параметры ГЭД регулируются с применением преобразователя частоты.

наиболее распространенными системами автоматического управления, несмотря на их большое разнообразие, являются системы, действующие по принципу отклонения регулируемой величины. При этом контуры регулирования скорости вращения ГЭД, тока возбуждения и тока нагрузки главных генераторов действуют независимо друг от друга и связаны через объект управления в динамических режимах их работы. Это характерно для схем управления ГЭУ ледоколов и паромов как отечественной, так и иностранной постройки.

Получили дальнейшее развитие ГЭУ с подчиненным и векторным управлением, обеспечивающие эффективное функционирование специальных электроприводов в условиях частоты изменений режимов их работы и требований изменения параметров электрических машин в широких пределах.

В системах управления гребных электроустановок рассматриваемых судов имеются отдельные контуры управления различными электрическими параметрами. Связь между контурами в системах, работающих по принципу отклонения, не используется. Это характерно для большинства схем управления ГЭУ. Между тем использование этих связей, действующих в переход­ных процессах, повысит эффективность функционирования схем управления электродвижения, позволит получить оптимальные параметры переходных процессов, повысит качество управления ГЭД в динамических режимах.