
- •1.2. Основные физические свойства жидкостей
- •1.1. Плотность и удельный вес воды при различных температурах
- •1.2.Плотность и удельный вес некоторых жидкостей
- •1.3. Плотность дистиллированной воды при атмосферном давлении 0,1 мПа
- •1.4 Зависимость кинематической вязкости воды от температуры
- •1.5 Кинематическая вязкость некоторых жидкостей
- •1.6. Зависимость динамической вязкости воды от температуры
- •1.7. Динамическая вязкость некоторых жидкостей
- •Лекция №2 гидростатика
- •Поверхности равных давлений
- •Основное уравнение гидростатики
- •Абсолютное и избыточное давление. Разрежение
- •Для закрытого сосуда
- •Если , то если , то .
- •Закон архимеда
- •Принципы и схемы использования законов гидростатики в гидравлических машинах
- •К подъёмнику
- •Гидродинамика
- •Общие сведения.
- •Основные уравнения гидродинамики
- •Уравнение Бернулли, его энергетическая и геометрическая интерпретации.
- •Уравнение бернулли для потока вязкой жидкости
- •Гидравлические сопротивления
- •Рейнольдс установил, что критическая скорость прямо пропорциональна кинематической вязкости жидкости V и обратно пропорциональна диаметру трубы d, т. Е.
- •Плоскость сравнения
- •3.1. Значеия коэффициента сжатия
- •Гидравлический расчет трубопроводов
- •Расчет тупиковой и кольцевой сети трубопровода
- •Истечение жидкости через отверстия и насадки
- •Малое (а) и затопленное (б) отверстия
- •Гидравлический расчет каналов и безнапорных водоводов
- •Фильтрация
- •Гидравлические машины динамические насосы и вентиляторы
- •Классификация гидравлических машин
- •Основное уравнение центробежных насосов
- •Рабочий процесс в центробежном насосе
- •Рабочая характеристика центробежного насоса (б)
- •Основы теории подобия и пересчет характеристик насоса
- •Конструкции лопастных насосов
- •Подбор насосов
- •Водокольцевые вакуум-насосы
- •Вихревые насосы
- •Специальные насосы и водоподъемные средства
- •Водоструйные насосы.
- •Вентиляторы
- •Статическое давление
- •Окружная скорость
- •Объемные гидромашины
- •Роторные гидромашины
- •6.3. Крыльчатые насосы
- •Глава 7 динамические гидропередачи
- •7.1. Основные сведения о гидропередачах
- •7.2. Уравнение моментов сил, приложенных к гидропередаче
- •7.3. Преобразующие свойства и характеристики гидропередач
- •7.4. Рабочие жидкости
- •7.5. Пути повышения эффективности гидропередач
- •Глава 8 объемные гидроприводы
- •8.1. Основные сведения о гидроприводе
- •8.2. Принцип действия и характеристики
- •8.3. Гидроцилиндры
- •8.4. Гидрораспределители
- •8.5. Клапаны
- •8.6. Типовые схемы и расчет объемных гидроприводов. Гидравлические системы управления и регулирования
- •8.1. Исходные данные для решения задач 8.1...8.10
- •Раздел 3
- •Глава 9
- •9.1. Особенности сельскохозяйственного водоснабжения
- •9.2. Требования, предъявляемые к качеству питьевой воды
- •9.3. Источники водоснабжения
- •9.4. Основные схемы сельскохозяйственного водоснабжения
- •9.5. Нормы и режимы водопотребления
- •9.6. Расчет расходов воды в водопроводной сети
- •9.7. Общая методика гидравлического расчета водопроводной сети
- •9.7. Общая методика гидравлического расчета водопроводной сети
- •9.8. Конструкции и расчет водонапорных башен
Водокольцевые вакуум-насосы
Водокольцевые насосы относятся к группе самовсасывающих, или вакуум-насосов.
Рис. Водокольцевой насос:
а—схема: 1— корпус; 2, 3— отверстия; 4— рабочее колесо; 5, 6— камеры;
б— общий вид
Устройство их таково, что они могут всасывать и воздух, и воду. Большой недостаток центробежных насосов обычных конструкций — их неспособность к самостоятельному всасыванию жидкости, так как воздух, первоначально находящийся во всасывающей трубе, вследствие его малой массы не может быть откачан для создания достаточно глубокого вакуума, обеспечивающего подъем жидкости до заполнения ею рабочего колеса насоса. Водокольцевые насосы могут создавать значительные разрежения в воздушной среде, а следовательно, и поднимать жидкость по всасывающей трубе на достаточно большую высоту, т. е. могут сами всасывать жидкость без предварительной заливки насоса. Это явление называют самовсасыванием.
Применяют водокольцевые насосы как самостоятельные агрегаты для перекачки газов или жидкостей, но чаще как вспомогательные установки для обеспечения заливки больших центробежных насосов, а также для создания и поддержания вакуума в различных емкостях и аппаратах.
По конструкции водокольцевые насосы сходны с ротационными, но рабочее колесо водокольцевого насоса имеет радиальные неподвижные лопатки.
Корпус насоса заливают водой не полностью. В корпусе 1 насоса на валу, установленном с эксцентриситетом, смонтировано рабочее колесо 4. Лопатки колеса касаются верхней образующей внутренней области цилиндрического корпуса, но они не доходят до нижней образующей на значительное расстояние. Лопатки колеса вплотную подходят к торцевым крышкам корпуса насоса, в которых выполнены отверстия 2 и 3.
При вращении крыльчатки вода отбрасывается под действием центробежной силы к периферии, причем в камере 5 образуется вакуум, распространяемый на отверстие 3. Это отверстие является всасывающим. Через него поступает воздух (или жидкость) в камеру 5, которая при вращении крыльчатки в направлении, указанном стрелкой, переносится по часовой стрелке до сообщения с отверстием 2. Но камера 5, заполненная газом или жидкостью, уменьшается при этом вращении, и ее содержимое нагнетается в отверстие 2. Постоянное повторение этого процесса и составляет рабочий процесс водокольцевого насоса.
В емкость, входящую в состав установки, может поступать воздух; из насоса он уходит в атмосферу, а в насос требуется периодически добавлять жидкость. Если насосом откачивается вода, то избыток ее отводится по водосливной трубке, а необходимая доля может поступить обратно в насос, когда он вновь будет всасывать воздух.
Вихревые насосы
Рабочий орган вихревого насоса (рис. ) — рабочее колесо, представляющее собой диск, по бокам которого по внешнему диаметру профрезерованы лопатки. Рабочее колесо расположено в корпусе насоса концентрично кольцевому каналу, охватывающему торец рабочего колеса. Кольцевой канал выполнен в боковых и периферийной стенках корпуса и прерывается перемычкой, расположенной между всасывающим и нагнетательным патрубками. Перемычка служит уплотнением между напорной и входной полостями.
Принцип работы насоса состоит в следующем. При вращении рабочего колеса частицы жидкости в ячейках вращаются вместе с колесом и вследствие трения увлекают частицы жидкости, расположенные в кольцевом канале, охватывающем рабочее колесо. Одновременно на частицы, расположенные между лопастями, действует центробежная сила, и они отбрасываются в кольцевой канал, а затем вновь попадают на колесо, совершая вихревое движение. В результате развивается движение с высокими тангенциальными скоростями с одновременным образованием и разрушением вихрей и действием на жидкость центробежных сил. Напор вихревого насоса в 4...6 раз больше, чем центробежного, при тех же габаритах и частоте вращения. Вихревые насосы выпускают одноступенчатыми и двухступенчатыми. Всасывающий и нагнетательный патрубки расположены в верхней части корпуса насоса. После остановки насос остается залитым для последующего пуска. Кроме того, вихревые насосы обладают самовсасывающей способностью, что позволяет использовать их в качестве вакуум-насосов при заливе крупных центробежных насосов. У вихревых насосов относительно невысок КПД (25...55 %). Выпускают комбинированные насосы, у которых в одном корпусе размещены и вихревые, и центробежные колеса.
Технические данные вихревых насосов приведены в табл.
Сопоставление технических данных вихревых и центробежно-вихревых насосов показывает, что при одинаковых подачах вихревые и центробежно-вихревые насосы работают при более высоких напорах, но относительно низких КПД.
Подачу вихревых насосов можно регулировать либо дросселированием потока на выходе из насоса, либо изменением частоты вращения. Чаще применяют первый метод из-за его простоты, хотя второй значительно более экономичен.