
- •1.2. Основные физические свойства жидкостей
- •1.1. Плотность и удельный вес воды при различных температурах
- •1.2.Плотность и удельный вес некоторых жидкостей
- •1.3. Плотность дистиллированной воды при атмосферном давлении 0,1 мПа
- •1.4 Зависимость кинематической вязкости воды от температуры
- •1.5 Кинематическая вязкость некоторых жидкостей
- •1.6. Зависимость динамической вязкости воды от температуры
- •1.7. Динамическая вязкость некоторых жидкостей
- •Лекция №2 гидростатика
- •Поверхности равных давлений
- •Основное уравнение гидростатики
- •Абсолютное и избыточное давление. Разрежение
- •Для закрытого сосуда
- •Если , то если , то .
- •Закон архимеда
- •Принципы и схемы использования законов гидростатики в гидравлических машинах
- •К подъёмнику
- •Гидродинамика
- •Общие сведения.
- •Основные уравнения гидродинамики
- •Уравнение Бернулли, его энергетическая и геометрическая интерпретации.
- •Уравнение бернулли для потока вязкой жидкости
- •Гидравлические сопротивления
- •Рейнольдс установил, что критическая скорость прямо пропорциональна кинематической вязкости жидкости V и обратно пропорциональна диаметру трубы d, т. Е.
- •Плоскость сравнения
- •3.1. Значеия коэффициента сжатия
- •Гидравлический расчет трубопроводов
- •Расчет тупиковой и кольцевой сети трубопровода
- •Истечение жидкости через отверстия и насадки
- •Малое (а) и затопленное (б) отверстия
- •Гидравлический расчет каналов и безнапорных водоводов
- •Фильтрация
- •Гидравлические машины динамические насосы и вентиляторы
- •Классификация гидравлических машин
- •Основное уравнение центробежных насосов
- •Рабочий процесс в центробежном насосе
- •Рабочая характеристика центробежного насоса (б)
- •Основы теории подобия и пересчет характеристик насоса
- •Конструкции лопастных насосов
- •Подбор насосов
- •Водокольцевые вакуум-насосы
- •Вихревые насосы
- •Специальные насосы и водоподъемные средства
- •Водоструйные насосы.
- •Вентиляторы
- •Статическое давление
- •Окружная скорость
- •Объемные гидромашины
- •Роторные гидромашины
- •6.3. Крыльчатые насосы
- •Глава 7 динамические гидропередачи
- •7.1. Основные сведения о гидропередачах
- •7.2. Уравнение моментов сил, приложенных к гидропередаче
- •7.3. Преобразующие свойства и характеристики гидропередач
- •7.4. Рабочие жидкости
- •7.5. Пути повышения эффективности гидропередач
- •Глава 8 объемные гидроприводы
- •8.1. Основные сведения о гидроприводе
- •8.2. Принцип действия и характеристики
- •8.3. Гидроцилиндры
- •8.4. Гидрораспределители
- •8.5. Клапаны
- •8.6. Типовые схемы и расчет объемных гидроприводов. Гидравлические системы управления и регулирования
- •8.1. Исходные данные для решения задач 8.1...8.10
- •Раздел 3
- •Глава 9
- •9.1. Особенности сельскохозяйственного водоснабжения
- •9.2. Требования, предъявляемые к качеству питьевой воды
- •9.3. Источники водоснабжения
- •9.4. Основные схемы сельскохозяйственного водоснабжения
- •9.5. Нормы и режимы водопотребления
- •9.6. Расчет расходов воды в водопроводной сети
- •9.7. Общая методика гидравлического расчета водопроводной сети
- •9.7. Общая методика гидравлического расчета водопроводной сети
- •9.8. Конструкции и расчет водонапорных башен
Рабочая характеристика центробежного насоса (б)
Режим работы насоса, соответствующий максимальному КПД, называют оптимальным. Главная цель подбора насосов — обеспечение их эксплуатации при оптимальном режиме, учитывая, что кривая КПД имеет в зоне оптимальной точки пологий характер, однако на практике пользуются рабочей частью характеристики насоса (зона, соответствующая примерно 0,9hмакс, в пределах которой допускаются подбор и эксплуатация насосов).
Кавитационные характеристики необходимы для оценки кавитационных свойств насосов и правильного выбора высоты всасывания. Для построения кавитационной характеристики насоса его подвергают кавитационным испытаниям на специальных стендах.
В определенных границах изменения избыточного напора на всасывании Hвс.изб значения Q, Н и hостаются неизменными. При некоторых значениях Нвс.изб появляются шумы и треск при работе насоса, характеризующие наступление местной кавитации. При дальнейшем понижении Нвс.изб значения Q, Н и h начинают постепенно уменьшаться, кавитационный шум усиливается и в конечном счете происходит срыв работы насоса. Точно установить момент начала воздействия кавитации на Q, Н и h не представляется возможным, поэтому условно принимают за минимальную избыточную высоту всасывания Нвс.изб min, то ее значение, при котором подача насоса падает на 1 % своего первоначального значения.
Очень часто на рабочие характеристики насосов наносят еще кривую Нвак — Q, которая дает значения допустимой вакуумметрической высоты всасывания в зависимости от подачи насоса.
Основы теории подобия и пересчет характеристик насоса
Основы теории подобия. Движение жидкости в проточной части лопастных насосов имеет достаточно сложный характер, поэтому при разработке и создании современных гидромашин необходимо проводить испытания в лабораторных и натурных условиях. Такие исследования опираются на использование общей теории гидромеханического подобия движения реальной жидкости.
Геометрическое подобие, как известно из геометрии, представляет собой пропорциональность сходственных размеров и равенство соответствующих углов. В гидравлике под геометрическим подобием понимают подобие тех поверхностей, которые ограничивают потоки, т. е. подобие русл или каналов. При моделировании два насоса могут считаться подобными, если линейные размеры одного из них (модель) в одинаковое число раз меньше соответствующих размеров другого:
При геометрическом подобии все углы постоянны. Для полного геометрического подобия необходимо, чтобы относительная шероховатость D/D и относительные зазоры d/ D) были одинаковы для обоих насосов.
Кинематическое подобие означает пропорциональность местных скоростей в сходственных точках и равенство углов, характеризующих направление этих скоростей. Траектории движения должны быть геометрически подобны:
Динамическое подобие— это пропорциональность сил, действующих на сходственные объемы в кинематически подобных потоках, и равенство углов, характеризующих направление этих сил. Динамическое подобие сводится к равенству чисел, или критериев Эйлера, Рейнольдса, Фруда:
две l — характерный линейный размер; t — время.
Гидромеханическое подобие основывается на соблюдении геометрического, кинематического и динамического подобия.
Критерии будут определяющими тогда, когда они выражены через исходные величины, задаваемые в начальных и граничных условиях.
В практике моделирования гидромашин большое значение имеет критерий Эйлера:
Пересчет характеристик насоса при изменении частоты вращения и диаметра рабочего колеса. Для пересчета характеристик воспользуемся формулами закона пропорциональности:
при наружном диаметре рабочего колеса D2 = const.
Пересчет осуществляется следующим образом: задают ряд значений расхода Q, по имеющейся характеристике находят соответствующие каждому значению Q напор Н и КПД. Подставляют найденные значения Q1, п1 и H в уравнение и получают соответствующие значения Q2, h2 и H2, т. е. координаты точек новой характеристики насоса при частоте вращения n2. Наносят точки на график и получают искомую характеристику насоса при n2.
Если дана зависимость Н от Q при n1 = const., то аналогичная кривая для n2 = const может быть получена пересчетом абсцисс точек (подач) первой кривой пропорционально отношениям частот вращения, а ординат (напоров) — пропорционально квадрату этого отношения. Таким путем можно получить целую серию характеристик одного и того же насоса для ряда разных частот вращения n2, n3, n4 и т. д.
На практике, если подобрать центробежный насос по каталогу или с применением закона динамического подобия не удается, прибегают к обточке его рабочего колеса. Практика и проведенные испытания показали, что при допустимом уменьшении диаметра колеса КПД насоса снижается мало, но довольно сильно изменяются подача и напор. Необходимую степень обточки колеса определяют таким образом, чтобы удовлетворить расчетным значениям подачи и напора. Максимальная степень обточки колеса центробежного насоса зависит от быстроходности и возможна в следующих пределах: для ns = 60… 120—на 20...15 %, для ns = 120...200 — на 15...10, для ns = 200...300 — на 10...5 %.