Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы A5.doc
Скачиваний:
1
Добавлен:
01.03.2025
Размер:
1.06 Mб
Скачать
  1. . Теплопередача через цилиндрическую стенку (граничные условия 3-его рода).

Рассмотрим однородную цилиндрическую стенку большой длины с внутренним диаметром d1, наружным диаметром d2 и постоянной теплопроводностью. Заданы значения температуры горячей tж1 и холодной tж2 среды и коэффициенты теплоотдачи 1 и 2. для стационарного режима можно записать:

; ;

где - линейный коэффициент теплопередачи, характеризует интенсивность передачи теплоты от одной жидкости к другой через разделяющую их стенку; численно равен количеству теплоты, которое проходит от одной среды к ругой через стенку трубы длиной 1м в единицу времени при разности температур между ними в 1К.

Величина, обратная линейному коэффициенту теплопередачи, называется линейным термическим сопротивлением теплопередаче.

Для многослойной стенки линейное термическое сопротивление теплопередаче складывается из линейных сопротивлений теплоотдаче и суммы линейных термических сопротивлений теплопроводности слоев.

Температуры на границе между слоями:

  1. . Шаровая стенка (граничные условия 1-ого и 3-его рода).

Граничные условия III рода.

Принципы теплопередачи через шаровую стенку те же, что и через цилиндрическую. Пусть внутренний диаметр шара равен d1, внешний – d2, теплопроводность , температура горячей жидкости внутри шара tж1, температура холодной жидкости снаружи шара tж2, коэффициенты теплоотдачи 1 и 2.

При стационарном режиме количество теплоты, переданное от горячей жидкости к холодной, равно: ; ;

где коэффициент теплопередачи для шаровой стенки.

Величина, обратная коэффициенту теплопередачи шаровой стенки, называется термическим сопротивлением теплопередаче шаровой стенки.

Граничные условия I рода.

Пусть имеется шар с радиусами внутренней и внешней поверхности r1 и r2, постоянной теплопроводностью и с заданными равномерно распределенными температурами поверхностей tc1 и tc2.

При этих условиях температура зависит только от радиуса r. По закону Фурье тепловой поток сквозь шаровую стенку равен: .

Интегрирование уравнения дает следующее распределение температуры в шаровом слое:

Граничные условия. ;

Следовательно ,  - толщина стенки.

Распределение температуры:  при постоянной теплопроводности температура в шаровой стенке изменяется по закону гиперболы.

  1. . Термические сопротивления.

Однослойная плоская стенка:

Граничные условия 1го рода

Отношение называется тепловой проводимостью стенки, а обратная ему величина – термическим сопротивлением стенки.

Граничные условия 3го рода

Величина, обратная коэффициенту теплопередачи называется термическим сопротивлением теплопередаче: .

Однослойная цилиндрическая стенка:

Граничные условия 1го рода

Величина есть термическое сопротивление теплопроводности цилиндрической стенки. (для многослойной стенки: )

Граничные условия 3го рода

Линейное термическое сопротивление теплопередаче:

Линейное термическое сопротивление теплопередаче:

(многослойная стенка)

  1. . Критический диаметр изоляции.

Рассмотрим случай когда труба покрыта однослойной тепловой изоляцией с наружным диаметром d3. считая заданными и постоянными коэффициенты теплоотдачи 1 и 2, температуры обеих жидкостей tж1 и tж2, теплопроводности трубы 1 и изоляции 2.

Согласно уравнению , выражение для линейного термического сопротивления теплопередаче через двухслойную цилиндрическую стенку имеет вид: .

При возрастании диаметра изоляции член будет возрастать, а член – уменьшаться. Иными словами, увеличения наружного диаметра изоляции влечет за собой увеличение термического сопротивления теплопроводности изоляции и уменьшение термического сопротивления теплоотдаче на ее наружной поверхности. Последнее обусловлено увеличением площади наружной поверхности.

Экстремум функции Rlкритический диаметр обозначается как dкр. Служит показателем пригодности материала к использованию его в качестве тепловой изоляции для трубы с заданным наружным диаметром d2 при заданном коэффициенте теплоотдачи 2.

10. Выбор тепловой изоляции по критическому диаметру.

См. вопрос 9. диаметр изоляции должен превышать критический диаметр изоляции.

11. Теплопередача через оребренную стенку. Коэффициент оребрения.

Рассмотрим оребренную стенку с толщиной  и теплопроводностью . С гладкой стороны площадь поверхности равна F1, а с оребренной – F2. заданы постоянные во времени температуры tж1 и tж2, а также коэффициенты теплоотдачи 1 и 2.

Обозначим температуру гладкой поверхности tc1. Предположим, что температура поверхностей ребер и самой стенки одинакова и равна tc2. Такое предположение, вообще говоря, не соответствует действительности, но упрощает расчеты и им часто пользуются.

При tж1 > tж2 для теплового потока Q можно написать следующие выражения:

; ;

где коэффициент теплопередачи для оребренной стенки.

При расчете плотности теплового потока на единицу неоребренной поверхности стенки получим: . k1 – коэффициент теплопередачи, отнесенный к неоребренной поверхности стенки.

Отношение площади оребренной поверхности к площади гладкой поверхности F2/F1 называется коэффициентом оребрения.