- •. Основные понятия и определения - температурное поле, градиент, тепловой поток, плотность теплового потока (q,q), закон Фурье.
- •2. Уравнение теплопроводности, условия однозначности.
- •Теплопроводность в стенке (граничные условия 1-ого рода).
- •Теплопроводность однослойной стенки.
- •Теплопроводность многослойной стенки.
- •4. Теплопередача через плоскую стенку (граничные условия 3-его рода).
- •5. Теплопроводность в цилиндрической стенке (граничные условия 1-ого рода).
- •. Теплопередача через цилиндрическую стенку (граничные условия 3-его рода).
- •. Шаровая стенка (граничные условия 1-ого и 3-его рода).
- •. Термические сопротивления.
- •. Критический диаметр изоляции.
- •12. Нестационарная теплопроводность. Направляющая точка. Физический смысл Bi, Fo.
- •Условия однозначности.
- •18. Уравнения движения. Условия однозначности.
- •19. Уравнение неразрывности. Условия однозначности.
- •21. Основные положения теории подобия. Теоремы подобия.
- •23. Коэффициент теплоотдачи.
- •29. Теплоотдача при кипении.
- •30. Теплоотдача при конденсации.
- •31. Теплообмен излучением. Основные понятия и определения (е, q).
- •32. Законы излучения Планка и Вина, Стефана-Больцмана, Кирхгофа.
- •§ 59. Законы теплового излучения
- •Степень черноты. Законы Стефана-Больцмана, Кирхгофа.
- •Закон Ламберта.
- •35. Теплообмен излучением между неограниченными плоскостями
- •37. Теплообмен излучением при наличии экранов
- •38. Излучение газов и паров. Закон Бугера.
- •39. Понятие о сложном теплообмене.
- •40. Теплообменные аппараты. Расчет теплообменных аппаратов. Основные уравнения. Среднелогарифмический температурный напор.
- •41. Среднелогарифмический температурный напор. Вывод формулы.
- •42. Определение конечных температур теплоносителя.
- •43. Сравнение прямотока и противотока.
- •44. Расчет коэффициента теплопередачи для рекуперативного теплообменника.
- •45. Особенности теплового расчета регенеративных и смесительных теплообменных аппаратов.
- •46. Основные понятия массообмсна. Закон Фика.
- •47. Аналогия тепло- и массообмена. Формулировка задачи.
40. Теплообменные аппараты. Расчет теплообменных аппаратов. Основные уравнения. Среднелогарифмический температурный напор.
Теплообменными аппаратами (теплообменниками) называют устройства, предназначенные для передачи теплоты от одной среды к другой при осуществлении различных тепловых процессов (например, нагревания, охлаждения, кипения, конденсации). Жидкие среды, воспринимающие или отдающие теплоту, именуют горячими или холодными теплоносителями.
По принципу действия теплообменные аппараты разделяются на поверхностные (рекуперативные и регенеративные), в которых тепловой перенос осуществляется с использованием разделяющих поверхностей и твердых тел, и смесительные, процессы нагревания и охлаждения в которых происходят при непосредственном контакте теплоносителей.
В рекуперативных теплообменниках горячий и холодный теплоносители перемещаются одновременно, а теплота непрерывно передается через разделяющую их стенку.
Регенеративными (регенераторами) называются теплообменные аппараты, в которых теплоносители попеременно соприкасаются с поверхностью так называемой насадки, аккумулирующей теплоту от горячего теплоносителя и отдающей ее холодному теплоносителю. Таким образом, для регенераторов характерен нестационарный теплообмен.
В зависимости от агрегатного состояния теплоносителей рекуперативные теплообменники классифицируются на газогазовые, газожидкостные, парогазовые, парожидкостные и жидкостножидкостные. В основу классификации рекуперативных теплообменников может быть также положен способ компоновки теплопередающей поверхности или ее конфигурация: теплообменники типа «труба в трубе», кожухотрубчатые, с прямыми трубками, змеевиковые, пластинчатые, ребристые.
По относительному движению потоков теплоносителей теплообменники делят на прямоточные, противоточные и со смешанным током.
В особую группу выделяют теплообменные аппараты с внутренними источниками теплоты, отвод которой осуществляется одним теплоносителем. Примером таких теплообменников могут служить электронагреватели, ядерные реакторы и др.
При проектировании новых теплообменных аппаратов необходимо выполнить конструкторский тепловой расчет, целью которого является определение площади поверхности теплообмена, обеспечивающей передачу заданного количества теплоты от одного теплоносителя к другому. Для выявления возможности использования имеющихся аппаратов в тех или иных целях производят поверочный тепловой расчет, определяя конечные температуры теплоносителей t"г и t"x и количество переданной теплоты.
Основными расчетными уравнениями, записанными в дифференциальной форме, являются уравнение теплопередачи для элемента площади поверхности теплообмена dF:
(17.1)
и уравнение теплового баланса:
(17.2)
где Мг, Мх — массовые расходы горячего и холодного теплоносителей, кг/с; hг, hx — энтальпии теплоносителей, кДж/кг; dQпот — потери в окружающую среду, кВт.
В общем случае температуры теплоносителей в теплообменнике изменяются, изменяется и температурный напор t = tг— tx. В расчетах используется среднее по всей площади поверхности теплообмена значение температурного напора tcp. В этом случае уравнение теплопередачи (17.1) записывается в виде (k=const):
(17.3)
Удельные изобарные теплоемкости ср теплоносителей зависят от температуры. Если использовать среднее значение изобарной теплоемкости в интервале температур от t' (вход) до t" (выход) и пренебречь потерями теплоты в окружающую среду Qпот, то уравнение (17.2) преобразуется так:
(17.4)
Произведение Mcp является полной теплоемкостью массового расхода теплоносителя в единицу времени и измеряется в Вт/К. Эта величина часто называется водяным эквивалентом.
Уравнение (17.4) при введении в него полных теплоемкостей W примет вид:
(17.5)
или
(17.6)
Соотношение (17.6) может быть записано для элемента площади поверхности теплообмена dF: Wx/Wг=dtг/dtx.
Обычно при расчете теплообменников формула среднелогарифмического температурного напора используется в виде
(17.10)
где tб и tм — наибольшая и наименьшая разности температур для данного теплообменного аппарата.
