- •. Основные понятия и определения - температурное поле, градиент, тепловой поток, плотность теплового потока (q,q), закон Фурье.
- •2. Уравнение теплопроводности, условия однозначности.
- •Теплопроводность в стенке (граничные условия 1-ого рода).
- •Теплопроводность однослойной стенки.
- •Теплопроводность многослойной стенки.
- •4. Теплопередача через плоскую стенку (граничные условия 3-его рода).
- •5. Теплопроводность в цилиндрической стенке (граничные условия 1-ого рода).
- •. Теплопередача через цилиндрическую стенку (граничные условия 3-его рода).
- •. Шаровая стенка (граничные условия 1-ого и 3-его рода).
- •. Термические сопротивления.
- •. Критический диаметр изоляции.
- •12. Нестационарная теплопроводность. Направляющая точка. Физический смысл Bi, Fo.
- •Условия однозначности.
- •18. Уравнения движения. Условия однозначности.
- •19. Уравнение неразрывности. Условия однозначности.
- •21. Основные положения теории подобия. Теоремы подобия.
- •23. Коэффициент теплоотдачи.
- •29. Теплоотдача при кипении.
- •30. Теплоотдача при конденсации.
- •31. Теплообмен излучением. Основные понятия и определения (е, q).
- •32. Законы излучения Планка и Вина, Стефана-Больцмана, Кирхгофа.
- •§ 59. Законы теплового излучения
- •Степень черноты. Законы Стефана-Больцмана, Кирхгофа.
- •Закон Ламберта.
- •35. Теплообмен излучением между неограниченными плоскостями
- •37. Теплообмен излучением при наличии экранов
- •38. Излучение газов и паров. Закон Бугера.
- •39. Понятие о сложном теплообмене.
- •40. Теплообменные аппараты. Расчет теплообменных аппаратов. Основные уравнения. Среднелогарифмический температурный напор.
- •41. Среднелогарифмический температурный напор. Вывод формулы.
- •42. Определение конечных температур теплоносителя.
- •43. Сравнение прямотока и противотока.
- •44. Расчет коэффициента теплопередачи для рекуперативного теплообменника.
- •45. Особенности теплового расчета регенеративных и смесительных теплообменных аппаратов.
- •46. Основные понятия массообмсна. Закон Фика.
- •47. Аналогия тепло- и массообмена. Формулировка задачи.
39. Понятие о сложном теплообмене.
Сложным теплообменом называют процесс переноса теплоты, при котором теплообмен излучением протекает совместно с теплопроводностью и конвекцией. В сложном теплообмене излучение является важной составной частью. Сложный теплообмен можно разбить на три разновидности: теплообмен излучением между потоком излучающего газ и стенками канала, радиационно-кондуктивный теплообмен и радиационно-конвективный теплообмен.
При теплообмене излучением между потоком излучающего газа и стенками канала обычно пренебрегают теплопроводностью и считают, что теплота переносится только конвекцией в направлении движения потока.
Здесь учитывается неравномерное распределение температуры газа по сечению канала и его длине, возникающее из-за теплообмена. Оказывается, что теплота, переданная излучением, не растет монотонно с ростом степени черноты газового объема, а имеет максимальное значение при некотором ее значении. Уменьшение количества передаваемой теплоты при большой поглощательной способности среды объясняется тем, что охладившиеся пристенные слои малопрозрачного газа выполняют роль экрана, не пропуская на стенку излучение от удаленных слоев излучающего газа.
При радиационно-кондуктивном теплообмене происходит перенос теплоты в неподвижной ослабляющей и теплопроводящей среде путем излучения и теплопроводности. В случае нерассеивающей среды этот вид теплообмена характеризуется оптической толщиной слоя среды kl, степенью черноты тепловоспринимающих поверхностей сг1; сг2, относительной температурой поверхности, имеющей низкую температуру = T2/T1, и параметром N=1/Кi=k/40T13, характеризующим взаимную интенсивность переноса теплоты теплопроводностью и излучением. Если N , то теплота переносится только теплопроводностью, N 0 — только излучением. Радиационно-кондуктивный: теплообмен является весьма сложным видом теплообмена. Сравнительно простые решения задачи получаются лишь для некоторых частных случаев.
При оптически тонком слое (kl = 0) излучение не поглощается в среде, а переносится от одной поверхности к другой, как в случае диатермичной среды. Полный тепловой поток определяется простым суммированием лучистого и кондуктивного потоков
(16.33)
При оптически толстом слое (kl) влияние радиационных свойств поверхностей простирается в глубь объема, а характеристики излучения в любой точке объема зависят лишь от условий в непосредственной близости от этой точки. В этом случае полный тепловой поток складывается иначе, чем в уравнении (16.33), радиационный поток несколько видоизменен:
Радиационно-конвективный теплообмен весьма сложен в физическом отношении и описывается довольно сложной системой уравнений. Эти два обстоятельства затрудняют как аналитические, так и экспериментальные исследования сложного теплообмена, в связи с чем задача его инженерного расчета еще далека от своего решения. Для практических расчетов обычно используют принцип независимости конвективного и лучистого потоков, что оказывается достаточно верным, если один из них значительно меньше другого. Так, для учета теплоотдачи излучением к коэффициенту теплоотдачи конвекцией, подсчитанному обычным образом, т. е. без учета влияния радиационного теплообмена на профили скорости и температуры, рекомендуется прибавлять условный коэффициент теплоотдачи излучением л, поэтому суммарный коэффициент теплоотдачи равен = к+л.
Для сложных процессов теплообмена используют ряд чисел подобия, в частности числа Больцмана — Во и Кирпичева — Ki, имеющие вид:
;
Число Больцмана Во характеризует радиационно-конвективный теплообмен: чем оно меньше, тем большую роль играет лучистый теплообмен в среде по сравнению с конвективным. Число Кирпичева Ki характеризует радиационно-кондуктивный теплообмен. Число Бугера Вu=kl0 характеризует оптическую плотность среды, т. е. прохождение через нее лучистой энергии.
