
- •13. Понятия и основные характеристики линий и каналов связи.
- •14. Виды модуляции, цифровое кодирование.
- •Аналоговая модуляция
- •Методы аналоговой модуляции
- •Цифровое кодирование
- •Требования к методам цифрового кодирования
- •15. Избыточные коды, скремблирование.
- •Технология скремблирования
- •16. Первичные сети pdh, sdh, dwdm.
15. Избыточные коды, скремблирование.
Известно, что каналы, по которым передается информация, практически никогда не бывают идеальными (каналами без помех). В них почти всегда присутствуют помехи. Отличие лишь в уровне помех и их спектральном составе. Помехи в каналах образуются по различным причинам, но результат воздействия их на передаваемую информацию всегда один – информация теряется (искажается).
Для предотвращения потерь информации в канале были придуманы избыточные коды (коды с избыточностью). Преимущество избыточного кода в том, что при приеме его с искажением (количество искаженных символов зависит от степени избыточности и структуры кода) информация может быть восстановлена на приемнике.
Существуют избыточные коды с обнаружением (они только обнаруживают ошибку) и коды с исправлением (эти коды обнаруживают место ошибки и исправляют ее).
Для различных помех в канале существуют различные по своей структуре и избыточности коды. Обычно избыточность кодов находится в пределах 10…60% или чуть больше. Избыточность 1/4 (25%) применяется при записи информации на лазерные диски и в системах цифрового спутникового ТВ.
Скремблирование (англ. scramble — перемешивать) — разновидность кодирования информации, для передачи по каналам связи и хранения, улучшающая спектральные и статиcтические характеристики.
Технология скремблирования
Наиболее распространённый способ скремблирования — смешивание сигнала с генератором псевдослучайных чисел. Аппаратные реализации скремблирования часто используют ГСЧ на сдвиговом регистре с линейной обратной связью.
Применение скремблирования
Скремблирование применяется практически во всех современных средствах передачи информации и носителях. В частности, скремблирование используют:
модем;
жёсткий диск;
компакт-диск и DVD.
С развитием телевизионного вещания возникает необходимость передачи программ для ограниченного круга телезрителей и как следствие – трансляция программ с маскированием информации. Для предотвращения просмотра программ платного телевидения абонентами, их не оплачивающими, передаваемый сигнал подвергают скремблированию (перемешиванию). Методы скремблирования относятся к маскированию связи. Для восстановления сигнала у абонента необходимы декодеры. Декодер устанавливается на приемной стороне (у телезрителя) в разрыв антенной линии или встраивается в телевизионный приемник. В последнем случае гарантии на телевизионный приемник принимает на себя тот, кто устанавливает декодер.
16. Первичные сети pdh, sdh, dwdm.
Первичные сети предназначены для создания коммутируемой инфраструктуры, с помощью которой можно достаточно быстро и гибко организовать постоянный канал с двухточечной топологией между двумя пользовательскими устройствами, подключенными к такой сети. В первичных сетях используется техника коммутации каналов. На основе каналов, образованных первичными сетями, работают наложенные компьютерные или телефонные сети. Каналы, предоставляемые первичными сетями своим пользователям, отличаются высокой пропускной способностью — обычно от 2 Мбит/с до 10 Гбит/с.
Cуществует три поколения технологий первичных сетей:
-плезиохронная цифровая иерархия (Plesiochronous Digital Hierarchy, PDH);
-синхронная цифровая иерархия (Synchronous Digital Hierarchy, SDH), которой в Америке соответствует стандарт SONET;
-уплотненное волновое мультиплексирование (DWDM).
Первые две технологии (PDH и SDH) для разделения высокоскоростного канала используют временное мультиплексирование (TDM) и передают данные в цифровой форме. Каждая из них поддерживает иерархию скоростей, так что пользователь может выбрать подходящую ему скорость для каналов, с помощью которых он будет строить наложенную сеть.
Технология SDH обеспечивает более высокие скорости, чем PDH, так что при построении крупной первичной сети ее магистраль строится на технологии SDH, а сеть доступа — на технологии PDH.
Сети DWDM представляют собой последнее достижение в области создания высокоскоростных каналов. Они уже не являются цифровыми, так как предоставляют своим пользователям выделенную волну для передачи информации, которую те могут задействовать по своему усмотрению — модулировать или кодировать. Технология DWDM вытесняет сегодня технологию SDH из протяженных магистралей на периферию сети, превращая SDH в технологию сетей доступа.
Три различные технологии коммутации и мультиплексирования позволяют создать гибкую и масштабируемую первичную сеть, способную обслуживать большое количество компьютерных и телефонных сетей.
Технология PDH была разработана в конце 60-х годов компанией AT&T для решения проблемы связи крупных коммутаторов телефонных сетей между собой. Линии связи FDM, применяемые ранее для решения этой задачи, исчерпали свои возможности по организации высокоскоростной многоканальной связи по одному кабелю. В технологии FDM для одновременной передачи данных 12 абонентских каналов использовалась витая пара, а для повышения скорости связи приходилось прокладывать кабели с большим количеством пар проводов или более дорогие коаксиальные кабели.
В результате длительной работы ITU-T и ETSI удалось разработать международный стандарт SDH (Synchronous Digital Hierarchy — синхронная цифровая иерархия). Кроме того, стандарт SONET был доработан так, чтобы аппаратура и сети SDH и SONET являлись совместимыми и могли мультиплексировать входные потоки практически любого стандарта PDH — и американского, и европейского.
В стандарте SDH все уровни скоростей (и, соответственно, форматы кадров для этих уровней) имеют общее название STM-N (Synchronous Transport Module level N — синхронный транспортный модуль уровня N). В технологии SONET существует два обозначения для уровней скоростей: STS-N (Synchronous Transport Signal level N — синхронный транспортный сигнал уровня N), употребляемое в случае передачи данных электрическим сигналом, и OC-N (Optical Carrier level N — оптоволоконная линия связи уровня N), употребляемое в случае передачи данных по волоконно-оптическому кабелю. Далее для упрощения изложения сосредоточимся на технологии SDH.
Кадры STM-N имеют достаточно сложную структуру, позволяющую агрегировать в общий магистральный поток потоки SDH и PDH различных скоростей, а также выполнять операции ввода-вывода без полного демультиплексирования магистрального потока
Технология уплотненного волнового мультиплексирования (Dense Wave Division Multiplexing, DWDM) предназначена для создания оптических магистралей нового поколения, работающих на мультигигабитных и терабитных скоростях. Такой революционный скачок производительности обеспечивает принципиально иной, нежели у SDH, метод мультиплексирования — информация в оптическом волокне передается одновременно большим количеством световых волн — лямбд — термин возник в связи с традиционным для физики обозначением длины волны X.
Сети DWDM работают по принципу коммутации каналов, при этом каждая световая волна представляет собой отдельный спектральный канал и несет собственную информацию.
Оборудование DWDM не занимается непосредственно проблемами передачи данных на каждой волне, то есть способом кодирования информации и протоколом ее передачи. Его основными функциями являются операции мультиплексирования и демультиплексирования, а именно — объединение различных волн в одном световом пучке и выделение информации каждого спектрального канала из общего сигнала. Наиболее развитые устройства DWDM могут также коммутировать волны.
Технология DWDM является революционной не только потому, что в десятки раз повышает верхний предел скорости передачи данных по оптическому волокну. Она также открывает новую эру в технике мультиплексирования и коммутации, выполняя эти операции над световыми сигналами без преобразования их в электрическую форму. Все другие типы технологий, которые также используют световые сигналы для передачи информации по оптическим волокнам, например SDH и Gigabit Ethernet, обязательно преобразуют световые сигналы в электрические и только потом могут их мультиплексировать и коммутировать.
Первым применением технологии DWDM были протяженные магистрали, предназначенные для связи двух сетей SDH. При такой простейшей двухточечной топологии способность устройств DWDM выполнять коммутацию волн является излишней, однако по мере развития технологии и усложнения топологии сетей DWDM эта функция становится востребованной.