
- •1. Введение
- •1.1. Задачи, стадии и этапы проектирования
- •1.2. Задачи коммерциализации: бизнес-план и жизненный цикл продукции
- •1.3. Вопросы для самоконтроля
- •2. Проектирование элементов мехатронных систем
- •2.1. Мехатроника – инструментарий для разработки робототехники
- •2.2. Программный инструментарий для проектирования мехатронных систем
- •2.3. MexBios Development StidioTm
- •2.4. Программное обеспечение VisSim
- •2.6. Вопросы для самоконтроля
- •3. Оптимизация пид-регулятора по заданному целевому функционалу
- •3.1. Основные требования к системе и математический аппарат
- •3.2. Требования к физической реализуемости модели
- •3.3. Формализация требований к системе: целевая функция
- •3.4. Особенности целевых функций при оптимизации регуляторов
- •3.5. Синтетические критерии оптимальности
- •3.6. Оптимизация ансамбля систем
- •3.7. Методы одномерной оптимизации
- •3.7.1. Прямые методы отыскания экстремума
- •3.7.2. Итеративный поиск
- •3.7.3. Метод Монте-Карло
- •3.7.4. Дихотомическое деление отрезка
- •3.7.5. Метод чисел Фибоначчи
- •3.7.6. Метод золотого сечения
- •3.8. Методы многопараметрической оптимизации
- •3.8.1. Случайный поиск
- •3.8.2. Метод исключения касательными
- •3.8.3. Градиентный метод
- •3.8.4. Метод Ньютона
- •3.8.5. Метод секущих
- •3.8.6. Метод покоординатного спуска
- •3.8.7. Метод Розенброка
- •3.8.8. Метод Хука – Дживса
- •3.8.9. Метод Нелдера – Мида (деформируемого многогранника)
- •3.8.10. Метод Флетчера-Рився (сопряженных градиентов)
- •3.8.11. Метод Девидона – Флетчера – Пауэлла (переменной метрики)
- •3.8.12. Метод локальной оптимизации
- •4. Эволюционные методы
- •4.1. Введение в эволюционные методы
- •4.2. Генетический алгоритм
- •4.3. Простой генетический алгоритм
- •4.4. Преимущества генетических алгоритмов
- •4.5. Пример с транспьютерными технологиями
- •4.6. Генетический метод комбинирования эвристик
- •5. ДинамическОе программирование
- •5.1. Принцип динамического программирования
- •Литература
- •ПриложенИя Приложение 1. Система технической документации на асу
- •Приложение 2. Выдержки из гост 34.601-90. Автоматизированные системы. Стадии создания
- •1. Общие положения
- •2. Стадии и этапы создания ас
- •Приложение 3. Выдержки из гост 34.602-89. Техническое задание на создание автоматизированной системы
- •1. Общие положения
- •2. Состав и содержание
- •3. Правила оформления
- •1. Исходные предпосылки создания комплекса
- •2. Взаимосвязь екс ас с другими системами и комплексами стандартов
- •1. Общие положения
- •2. Предварительные испытания
- •2.2. Автономные испытания
- •2.3. Комплексные испытания
- •3. Опытная эксплуатация
- •4. Приемочные испытания
- •1. Общие положения
- •2. Требования к содержанию документов
- •2.1. Схема организационной структуры
- •2.2. Описание организационной структуры
- •2.3. Технологическая инструкция
- •2.4. Инструкция по эксплуатации
- •2.5. Должностная инструкция
- •1. Виды и наименование документов
- •2. Комплектность документации
- •3. Обозначения документов
- •1. Введение 3
- •2. Проектирование элементов мехатронных систем 13
- •3. Оптимизация пид-регулятора по заданному целевому функционалу 19
- •4. Эволюционные методы 43
- •5. ДинамическОе программирование 56
3.5. Синтетические критерии оптимальности
Если имеется несколько величин, которые необходимо минимизировать или максимизировать, то стоимостный функционал целесообразно задавать в такой форме, чтобы он учитывал все эти величины. В теории рекомендуется вносить весовые коэффициенты. Но лишь при поверхностном взгляде кажется, что это легко решает проблему. При сопоставлении нескольких величин количество коэффициентов требуется на один меньше, чем величин (поскольку общий масштабный множитель не влияет на результат, так что один из коэффициентов можно произвольно положить единичным). Но для сложения разнородных величин необходимо их все привести к общим единицам, лучше – безразмерным. Естественный множитель может быть взят, если известна величина того или иного минимума для процесса, который может быть взят за некий эталон. Естественными множителями могут быть взяты величины, обратно пропорциональные этим значениям.
Другой способ объединения критериев – отыскание их общей природы и формирование критерия промежуточной природы.
Например, пусть имеются два критерия:
,
.
Пусть
для некоторой вполне приемлемой
траектории на заданном интервале эти
критерии принимают значения
,
.
Тогда сокращаем эти величины на общий множитель 100 и от полученных величин берем обратные значения, которые и используем в качестве весовых коэффициентов:
.
По второму способу мы усматриваем, что в подынтегральном выражении используются различные степени модуля величины e, следовательно, для формирования синтетического критерия можно попробовать взять среднее геометрическое от этой степенной функции, а именно:
.
Пример. Пусть имеется задача оптимизировать как время, так и стоимость проезда. Естественно, что эти затраты могут экономиться лишь ценой друг друга, т.е. можно экономить время, расходуя больше денег, и экономить деньги, теряя больше времени. Задача отыскания приемлемого компромисса, по сути, сводится к задаче сведения цены ресурсов в единой шкале цен – либо следует оценить время в рублях, либо рубли в часах, что, вообще говоря, одно и то же.
Скажем, если заработок путешественника составляет 100 руб. в час, можно допустить, что экономия часа вполне стоит того, чтобы оплатить ее хотя бы половинной ценой часового заработка. Это дает следующий естественный критерий:
,
где
,
и
- затраты времени и денег на проезд
отдельных участков пути.
Экспертный способ определения цены: если трудно назвать цену определенной работы, то зато, как правило, оказывается достаточным просто назвать две предельные цены, а именно: заведомо заниженную и заведомо завышенную. Скажем, «сколько стоит сходить вынести мусор?». Допустим, вы легко отдали бы 5 руб. человеку, который сделает это за вас, но вы не дали бы за эту работу 20 руб. Следовательно, истинная цена для вас лежит где-то посредине. «Серединой» можно называть среднее арифметическое и среднее геометрическое с равной степени обоснованности, если нет особых оснований для предпочтения того или иного способа усреднения (среднее геометрическое, это среднее по логарифму). В данном примере среднее арифметическое дает 12,5 руб., а среднее геометрическое – 10 руб. Разница в результатах пренебрежимо мала, но если требуется еще большая обоснованность решения, то можно указать середину между этими «серединами», т.е. 11 руб.
Нормативные оценки. Допустим, в электронике было принято, что стоимость затрат складывается из трех приблизительно равных величин: заработная плата разработчиков, стоимость комплектации и сопроводительные работы по изготовлению (монтажные, слесарные, сборка, покраска, маркировка, и т.п.). Это позволяет при обоснованной оценке одной из этих компонент прогнозировать стоимость других. Недостаток состоит в том, что вследствие развития технологий и в силу особенностей изделия эти пропорции могут сильно не выдерживаться. Однако есть много случаев, когда даже не вполне точная оценка необходима, и это лучше, чем отсутствие оценки.