
- •1. Введение
- •1.1. Задачи, стадии и этапы проектирования
- •1.2. Задачи коммерциализации: бизнес-план и жизненный цикл продукции
- •1.3. Вопросы для самоконтроля
- •2. Проектирование элементов мехатронных систем
- •2.1. Мехатроника – инструментарий для разработки робототехники
- •2.2. Программный инструментарий для проектирования мехатронных систем
- •2.3. MexBios Development StidioTm
- •2.4. Программное обеспечение VisSim
- •2.6. Вопросы для самоконтроля
- •3. Оптимизация пид-регулятора по заданному целевому функционалу
- •3.1. Основные требования к системе и математический аппарат
- •3.2. Требования к физической реализуемости модели
- •3.3. Формализация требований к системе: целевая функция
- •3.4. Особенности целевых функций при оптимизации регуляторов
- •3.5. Синтетические критерии оптимальности
- •3.6. Оптимизация ансамбля систем
- •3.7. Методы одномерной оптимизации
- •3.7.1. Прямые методы отыскания экстремума
- •3.7.2. Итеративный поиск
- •3.7.3. Метод Монте-Карло
- •3.7.4. Дихотомическое деление отрезка
- •3.7.5. Метод чисел Фибоначчи
- •3.7.6. Метод золотого сечения
- •3.8. Методы многопараметрической оптимизации
- •3.8.1. Случайный поиск
- •3.8.2. Метод исключения касательными
- •3.8.3. Градиентный метод
- •3.8.4. Метод Ньютона
- •3.8.5. Метод секущих
- •3.8.6. Метод покоординатного спуска
- •3.8.7. Метод Розенброка
- •3.8.8. Метод Хука – Дживса
- •3.8.9. Метод Нелдера – Мида (деформируемого многогранника)
- •3.8.10. Метод Флетчера-Рився (сопряженных градиентов)
- •3.8.11. Метод Девидона – Флетчера – Пауэлла (переменной метрики)
- •3.8.12. Метод локальной оптимизации
- •4. Эволюционные методы
- •4.1. Введение в эволюционные методы
- •4.2. Генетический алгоритм
- •4.3. Простой генетический алгоритм
- •4.4. Преимущества генетических алгоритмов
- •4.5. Пример с транспьютерными технологиями
- •4.6. Генетический метод комбинирования эвристик
- •5. ДинамическОе программирование
- •5.1. Принцип динамического программирования
- •Литература
- •ПриложенИя Приложение 1. Система технической документации на асу
- •Приложение 2. Выдержки из гост 34.601-90. Автоматизированные системы. Стадии создания
- •1. Общие положения
- •2. Стадии и этапы создания ас
- •Приложение 3. Выдержки из гост 34.602-89. Техническое задание на создание автоматизированной системы
- •1. Общие положения
- •2. Состав и содержание
- •3. Правила оформления
- •1. Исходные предпосылки создания комплекса
- •2. Взаимосвязь екс ас с другими системами и комплексами стандартов
- •1. Общие положения
- •2. Предварительные испытания
- •2.2. Автономные испытания
- •2.3. Комплексные испытания
- •3. Опытная эксплуатация
- •4. Приемочные испытания
- •1. Общие положения
- •2. Требования к содержанию документов
- •2.1. Схема организационной структуры
- •2.2. Описание организационной структуры
- •2.3. Технологическая инструкция
- •2.4. Инструкция по эксплуатации
- •2.5. Должностная инструкция
- •1. Виды и наименование документов
- •2. Комплектность документации
- •3. Обозначения документов
- •1. Введение 3
- •2. Проектирование элементов мехатронных систем 13
- •3. Оптимизация пид-регулятора по заданному целевому функционалу 19
- •4. Эволюционные методы 43
- •5. ДинамическОе программирование 56
4.4. Преимущества генетических алгоритмов
Генетические алгоритмы дают выигрыш в упрощении программирования: практически для генерации новых решений нет необходимости знать зависимость результата от признаков свойств решения. Если имеются основания для выбора, то генетический алгоритм их никак не учитывает.
Недостаток генетических алгоритмов именно в этом же. Проигрыш от их применений состоит в возрастании ресурса, необходимого для получения решения.
В случае применения генетического алгоритма в сетевых технологиях проигрыш ресурса компенсируется расширением задействованных вычислителей (нейронов), а выигрыш в простоте программирования позволяет подступиться к таким задачам, к которым затруднительно указать более обоснованный алгоритм.
В градиентных способах вычисляется предположительное направление и величина наиболее целесообразного очередного шага. Это вычисление может оказаться намного сложнее, чем осуществить перебор длины шагов в нужном направлении. Вычисление направления также может производиться в двоичной трактовке задачи, т.е. достаточно ответа на вопрос – увеличивать данный параметр, или уменьшать. Поэтому градиентный алгоритм при большом удалении от экстремума целевой функции может дать существенное преимущество, но при достаточной близости к экстремуму его применение зачастую неэффективно. Отметим, что если аналитического выражения для градиента вывести не удается, то применяемый способ будет не градиентным. Следовательно, итеративная настройка регуляторов не может осуществляться градиентным способом в принципе.
Преимущество генетических алгоритмов наиболее существенно в тех случаях, где требуется не единственное решение, а набор решений. Генетический алгоритм может применяться даже в том случае, когда критерий оптимальности не вполне аналитический, задан нечеткими соотношениями или даже субъективно. Главное, чтобы имелось какое-то основание отбросить одни варианты решений и отдать предпочтение другим вариантам, весьма желательно все же, чтобы это основание выражалось формальной величиной. Тогда эта величина может служить основанием для расчета вероятности воспроизводства генов этого родительского решения в потомстве.
Таким образом, мы видим, что критерий оптимальности важнее метода. Генетический алгоритм именно потому имеет право на существование, поскольку так или иначе использует критерий и так или иначе организует движение к экстремуму этого критерия. Не столь важно, как мы будем формировать новые решения, сколь важно, как мы будем выбраковывать плохие решения из получаемой совокупности. Если при формировании новых решений свойства родительских параметров будут сохраняться и приумножаться – этого достаточно для эффективного движения к цели, если это будет не всегда, то с учетом вводимых мутаций количество охватываемых вариантов решений все же растет, и генетический алгоритм может привести к успеху. Если же при объединении родительских генов их полезные свойства попросту разрушаются, то генетический алгоритм не приведет ни к чему хорошему.
Существенно, чтобы вычислительный и временной ресурс был более чем достаточен.
Существенная полезная черта генетического алгоритма – по аналогии с живой природой – промежуточные решения являются столь же хорошими, приемлемыми, достаточными для функционирования «популяции». Остановиться можно после проистечения некоторого времени практически в любой момент, т.е. всякое промежуточное решение также является и удовлетворительным. Наряду с тем, что в природе происходит естественный отбор, природа остается заселенной, живой. По сути, движение к цели тут важнее цели – цель может быть не достигнута никогда, и вообще говоря, не обязательно существует как таковая.