
12.4. Интеграторы
Если ООС, которой охвачен ОУ, образуется конденсатором, то схема выполняет математическую операцию интегрирования по времени (рис.12.8).
Рис.12.8. Интегратор на ОУ
Входной ток UВХ / R протекает через конденсатор С. В связи с тем, что инвертирующий вход имеет потенциальное заземление, выходное напряжение определяется следующим образом:
UВХ / R = – С (dUВЫХ / dt),
UВЫХ
= –
.
(12.7)
Представленной здесь схеме присущ один недостаток, связанный с тем, что выходное напряжение имеет тенденцию к дрейфу, обусловленному сдвигами ОУ и током смещения (в схеме отсутствует ООС по постоянному току). Это нежелательное явление можно ослабить, если использовать ОУ на полевых транзисторах, отрегулировать входное напряжение сдвига ОУ и выбрать большие величины R и C. Кроме того, на практике часто прибегают к периодическому сбросу в нуль интегратора с помощью подключенного к конденсатору переключателя (обычно на полевом транзисторе) (рис.12.9, а).
Если остаточный дрейф по-прежнему слишком велик для конкретного случая использования интегратора, то к конденсатору С следует подключить резистор с очень большим сопротивлением R2, который обеспечит стабильное смещение за счет обратной связи по постоянному току (рис.12.9, б). Такое подключение приведет к ослаблению интегрирующих свойств на очень низкой частоте: ƒ < 1/R2C.
Интегратор может служить источником линейно-изменяющегося напряжения, необходимого, например, в осциллографах в качестве генератора развертки, используемого также при реализации некоторых методов цифро-аналогового преобразования. Если на вход интегратора подать постоянное напряжение, на выходе получим линейно-возрастающее напряжение, которое будет увеличиваться вплоть до напряжения насыщения. Когда на входе действует симметричные относительно земли периодические колебания, это приводит к возникновению на выходе треугольных колебаний.
Схему 12.9, а можно использовать как генератор пилообразных колебаний. Для этого на вход необходимо подать постоянное напряжение, а на вход полевого транзистора – периодические прямоугольные импульсы (рис. 12.10).
При отрицательном напряжении на затворе полевой транзистор запирается, интегратор вырабатывает на выходе линейно-возрастающее напряжение, по приходу положительного импульса полевой транзистор открывается, конденсатор быстро разряжается, выходное напряжение сбрасывается до нуля. Периодические импульсы сброса формируют на выходе пилообразное напряжение.
а) б)
Рис.12.9. Интеграторы с уменьшенным дрейфом:
а) – с периодическим сбросом; б) – с резистором в цепи ООС
Рис.12.10. Временные диаграммы работы интегратора со сбросом
в качестве генератора пилообразных импульсов
12.5. Дифференциаторы
Дифференциаторы подобны интеграторам, в них только меняются местами резистор R и конденсатор C. Инвертирующий вход ОУ заземлен, поэтому изменение входного напряжение с некоторой скоростью вызывают изменения тока I = С(dUВХ /dt), а следовательно и выходного напряжения
UВЫХ = – RC(dUВХ / dt). (12.8)
На практике с дифференциаторами на основе ОУ работать трудно из-за их большой чувствительности к всевозможным шумам во входной цепи. Действующее напряжение шума может быть совсем небольшим, но часто скорость его изменения весьма велика и приводит к большим по величине паразитным сигналам на выходе дифференциатора. По этой причине избегают применения дифференциаторов везде, где это возможно. Если нельзя обойтись без дифференциатора, то можно понизить чувствительность к помехам, ослабляя эффективное усиление в усилителе на высоких частотах. Для этого последовательно с конденсатором С включают резистор (типичное значение – 1кОм), а параллельно резистору R – конденсатор небольшой емкости (типичное значение – 100пФ), и экспериментально подбирают значения этих параметров так, чтобы достичь приемлемого компромисса между чувствительностью к помехам и точностью дифференцирования (рис.12.11).
Рис.12.11. Дифференциатор на ОУ с уменьшенной чувствительностью к помехам