
- •1. Назначение сэу. История развития, классификация и состав современных сэу. Газотурбинные, паровые, атомные сэу.
- •1.1 Назначение и классификация сэу
- •1.2 История развития сэу
- •1.2.1 Век пара
- •1.2.2 Гребной винт
- •1.2.3 Первые пл
- •1.2.4 Броненосцы
- •1.2.5 Паровая турбина
- •1.2.6 Дредноуты
- •1.2.8 Парогазовая турбина
- •1.3 Состав сэу
- •1.4 Газотурбинные энергетические установки [2]
- •1.5 Паротурбинные энергетические установки [2]
- •1.6 Атомные энергетические установки [2]
- •Современные дэу речных и река-море судов. Заводы – производители. Главные показатели современных дэу.
- •2.1 Экономические и экологические характеристики судовых дизелей речных судов выпускаемых в настоящее время отечественными заводами
- •3.1 Определение эффективной мощности сэу и выбор числа валов [4]
- •3.2 Турбонаддув
- •3.3 Требования ррр к гд по частоте вращения
- •3.4 Режимы работы по винтовой характеристике (легкий и тяжелый винт) [1]
- •Выбор главных двигателей.
- •Исходные данные
- •5. Главные судовые передачи и муфты, судовой
- •5.1 Редукторы
- •5.2 Муфты
- •5.3 Общие требования Регистра к судовым передачам
- •5.4 Судовой валопровод
- •5.4.1 Требования Регистра
- •5.4.2 Определение диаметра валопровода и его проверка на прочность
- •Проверочный расчет валопровода [4]
- •6. Топлива и масла. Физико-химические свойства топлива и смазочных материалов, применяемых в сэу. Браковочные параметры масел.
- •6.1 Низшая удельная теплота сгорания топлив
- •6.2 Дизельное топливо
- •6.2.2 Испаряемость (фракционный состав)
- •6.2.3 Вязкость
- •6.2.4 Низкотемпературные свойства
- •6.2.5 Смазывающие свойства (противоизносные)
- •6.2.6 Химическая стабильность
- •6.2.7 Коррозионная агрессивность
- •6.2.8 Склонность к нагарообразованию (степень чистоты топлива)
- •6.2.9 Ассортимент, качество и состав дизельных топлив
- •6.3 Дизельное масло
- •6.3.1 Браковочные показатели масла.
- •7. Системы сэу. Системы: топливная, смазки, охлаждения, пуска двс, принципиальные схемы. [4]
- •7.1 Топливная система.
- •7.2 Система смазки
- •7.3 Система охлаждения
- •7.4 Система воздушного пуска
- •8. Запасы сэу. Автономность по различным системам сэу. Расчет запаса топлива и масла. Расчет по СанПиН запасов питьевой воды, сточных емкостей. Судовые емкости (цистерны), требования ррр. [4]
- •8.1 Расчет запасов топлива и масла (пример)
- •8.2 Определение емкости водяной, сточной и фекальной цистерн
- •8.2.1 Объем цистерны питьевой воды (пример)
- •8.2.2 Расчет удельного значения накопления по сточным водам (пример)
- •8.2.3 Расчет фекальной цистерны (пример)
- •8.2.4 Конструкция судовых цистерн
- •9. Вспомогательные сэу.
- •10. Управление энергетической установкой и её
- •10.1 Комплексное решение задач автоматизации судов
- •10.2 Уровни автоматизации сэу
- •11. Нормирование вредных выбросов отработавших газов сдвс, методы снижения вв ог. [3]
- •11.1 Состав вредных выбросов отработавших газов судовых дизелей
- •11.2 Оксиды азота в ог. Нормирование вредных выбросов дизелей.
- •11.3 Макрочастицы (дымность) ог дизелей и нормирование
- •11.4 Основные пути снижения вредных выбросов ог судовых дизелей на этапе конструирования
- •11.5 Основные пути снижения вредных выбросов ог судовых дизелей путем внешней очистки
- •11.6 Рециркуляция отработавших газов
- •12. Судовые средства защиты окружающей среды (станции очистки нефтесодержащих и сточных вод).
- •Характеристики сепараторов типа ск
- •13. Основные сведения о перспективах развития судовых энергетических установок. Перспективные топлива. [5]
- •13.1 Повышение экономичности современного дизеля
- •13.2 Интенсификация процесса сгорания
- •13.4 Совершенствование топливной аппаратуры
- •13.5 Применение новых топливных систем аккумуляторного типа
- •13.6 Разделенный впрыск топлива
- •13.7 Применение электроуправляемой гидроприводной насос - форсунки
- •13.8 Применение электронных систем управления топливоподачей
- •13.9 Повышение степени сжатия и максимального давления сгорания
- •13.10 Повышение давления впрыска с целью сокращения продолжительности впрыска топлива
- •13.11 Повышение аэродинамической эффективности каналов газообмена
- •13.12 Увеличение отношения s/d в четырехтактных судовых сод
- •13.13 Повышение механического кпд
- •13.14 Использование топливных присадок
- •13.15 Использование перспективных топлив
- •14. Расположение эу на судне (корабле).
- •Р ис.14.1 Машинное отделение яхты
- •15. Понятие сапр. Общие сведения о cad/cam/cae-системах.
- •Общие сведения о cad/cam/cae-системах [8].
- •Опыт внедрения комплексных программно-аппаратных решений сапр и электронного архива инженерной документации на судостроительных предприятиях
- •17. Элементы cae – cosmos Works. Основные понятия. Мкэ. Граничные условия. Прочностные расчеты. Примеры. Расчет прочности спонсона левого борта при действии внешнего давления (Константин Рудой)
- •Якунчиков Владимир Владимирович Конспект лекций по дисциплине «сэу»
- •Отпечатано в издательстве «Альтаир» Московской государственной академии водного транспорта г. Москва, Новоданиловская набережная, д. 2
11.6 Рециркуляция отработавших газов
Применение 10% рециркуляции выпускного газа может снизить NОх приблизительно на 30% без существенного изменения расхода топлива, хотя дымность несколько возрастает.
Основным компонентом выпускных газов является азот, но кроме него здесь содержатся пары воды и двуокиси углерода. И вода и СО2 имеют более высокие удельные значения теплоемкости и таким образом уменьшают температуру пламени внутри камеры сгорания и снижают NOх. Кроме того, уменьшение концентрации кислорода в камере снижает концентрацию NOх.
Однако существуют потенциальные проблемы:
- износ абразивными частицами выпускных газов и закоксовывание частицами камеры сгорания, турбо - нагнетателя и промежуточного охладителя. Это приводит к необходимости фильтрации ОГ;
- рост температуры нагнетаемого воздуха, при этом растут NOх, поэтому выпускные газы необходимо охлаждать;
- повышенная дымность, из-за недостатка кислорода для полного сгорания топлива;
12. Судовые средства защиты окружающей среды (станции очистки нефтесодержащих и сточных вод).
Очистка подсланевых (нефтесодержащиих) вод
Для
предотвращения загрязнения моря
нефтепродуктами на всех транспортных
морских судах устанавливаются системы
очистки льяльных и других загрязненных
вод. При использовании моторного и
дизельного топлив плотностью до 0,95
г/см3
наиболее эффективными являются
двухступенчатые системы грубой и тонкой
очистки. Грубая очистка осуществляется
в сепарирующих устройствах отстойного
типа, в которых от воды отделяются
грубодисперсные частицы нефтепродуктов.
Тонкая очистка производится в
фильтрах коалесцирующего типа. В случае
применения моторного топлива и
мазута плотностью более 0,95 г/см3
рекомендуется
применять двухступенчатые системы
очистки с сепараторами отстойного
типа, а для тонкой очистки — сепараторы
флотационного типа.
Рис.12.1. Схема двухступенчатой очистки загрязненных вод
Современные двухступенчатые системы независимо от начальной концентрации нефтепродуктов способны очищать воды до конечной концентрации Ск 15 мг/л. На рис.12.1 показана схема системы двухступенчатой очистки загрязненных нефтепродуктами вод. Из сборных колодцев (льял) 1 насосы 2 (основной или резервный) подают загрязненные воды в фильтр грубой очистки 3 с вертикальным движением жидкости. Емкость этого фильтра должна быть равна (или несколько больше) суточному объему поступающих загрязненных вод. Благодаря этому обеспечивается отстой нефтепродуктов между двумя периодическими откачиваниями. В фильтре 3 посредством змеевика 9 предусматривается обогрев смеси насыщенным паром низкого давления.
С ростом температуры смеси объем нефти увеличивается быстрее, чем объем воды, в результате чего возрастает подъемная сила, действующая на частицы нефти. Всплывшие нефтепродукты через клапанное устройство, отделяющее нефть от воды, проходят в нефтесборник 5, откуда удаляются в цистерну 4 сточных нефтепродуктов. Температура подогрева может поддерживаться в пределах от 35 до 50°С.
После грубой очистки смесь поступает в сепаратор 6 тонкой очистки коалесцирующего типа. Принцип действия таких сепараторов состоит в укрупнении частиц нефти путем их слияния при прохождении через коалесцирующий материал и последующего их отделения от воды под действием массовых сил. В качестве коалесцирующих материалов могут применяться шерсть, стекловолокно, синтетические волокна и др. В настоящее время широко используется новый материал — полипропилен, значительно превосходящий по коалесцирующим свойствам другие материалы.
Выделившиеся из смеси в сепараторе 6 нефтепродукты перетекают в нефтесборник 5, откуда удаляются в цистерну 4 сточных нефтепродуктов, а очищенная вода поступает в контрольную цистерну 8 и после проверки (при приемлемом значении Ск) сбрасывается за борт. Через трубку 7 из нефтесборника удаляется воздух, а через клапан 10 производится осушение системы. Нефтесборник 5 снабжен датчиками нижнего и верхнего уровня, автоматическим устройством для подогрева смеси, сброса нефти в цистерну 4 и выпуска воздуха.
Стоки из льял МО, за исключением стоков из льял, расположенных в районе грузовых насосов нефтяного танкера, не должны смешиваться с остатками нефтяного груза. Нефтяные остатки, которые по концентрации нефтепродуктов не могут быть сброшены в море, сохраняются на борту, сжигаются во вспомогательных парогенераторах, сливаются в приемные устройства на берегу или передаются на специальные суда.
Системы очистки с фильтрами коалесцирующего типа.
На рис.12.2 показана схема двухступенчатого сепаратора с коалесцирующими фильтрами типа СК. Такие сепараторы изготовляются семи типоразмеров производительностью от 0,6 до 10м3/ч.
Загрязненная нефтепродуктами вода через патрубок / поступает в однокаскадный фильтр грубой очистки 8. Перед сепаратором вода нагревается в теплообменном аппарате. В результате гравитационного отстоя укрупненные частицы нефти собираются в нефтесборнике 7 и через патрубок 6 сливаются в нефтесборную цистерну (на схеме не показана).
Тонкая очистка осуществляется при проходе воды через коалесцирующие фильтры 2. Коалесцирующий элемент представляет собой полый цилиндр из нетканого полипропилена. Наружная и внутренняя поверхности элемента могут быть защищены перфорированным металлическим корпусом. Частицы нефти собираются на коалесцирующей поверхности и укрупняются. Когда гравитационные силы укрупненных частиц превышают силы сцепления, частицы отрываются, всплывают в отстойную полость 3, а затем собираются в нефтесборнике 7. Воздух из сепаратора выходит через патрубки 5, а очищенная вода сливается через патрубок 4.
Р
ис.12.2.
Схема двухступенчатого сепаратора
типа СК.
В табл.12.1 приведены некоторые характеристики сепараторов типа СК. Рабочее давление смеси перед сепаратором р 0,4 МПа (гидравлическое сопротивление сепаратора обычно не превышает 0,35 МПа). Если основным видом топлива на судне является мазут, температура подогрева смеси составляет 45—50°С, если моторное топливо 35—40°С, если дизельное топливо, то смесь может не подогреваться. Из таблицы видно, что с увеличением производительности удельная масса сепаратора значительно снижается.
Срок службы коалесцирующих элементов зависит от степени загрязненности вод.
Таблица 12.1