
- •Тема 7 Поверхностные явления
- •§ 7.1 Эффект поля. Структура металл – диэлектрик – полупроводник (мдп-структура)
- •§ 7.2 Эффект поля в собственном полупроводнике
- •§ 7.3 Эффект поля в примесном полупроводнике
- •Тема 8 Полупроводниковые диоды § 8.1 Классификация, разновидности
- •§ 8.2. Стабилитроны
- •§ 8.3 Туннельные диоды
- •§ 8.4 Маркировка диодов
- •Тема 9 Биполярный транзистор
- •§ 9.1 Назначение, устройство транзистора
- •§ 9.2 Параметры, схемы включения и вах биполярного транзистора
- •§ 10.1 Тиристоры
- •Тема11 Полевые транзисторы, управляемые
- •§ 11.1 Назначение, устройство и принцип работы
- •Тема 12 Полевой транзистор с изолированным затвором (мдп – транзистор)
- •§ 12.1 Назначение, устройство и принцип работы
- •Тема 13 Приемники и источники излучения § 13.1 Фоторезисторы
- •§ 13.2 Фотодиоды
- •§ 13.3 Фотоэлементы
- •§ 13.4 P-I-n фотодиоды и лавинные фотодиоды
- •§ 13.5 Фототранзисторы и фототиристоры
- •§ 13.6 Светодиоды
- •Тема 14 Термоэлектрические приборы § 14.1 Полупроводниковые терморезисторы
- •§ 14.2 Измерение температуры с помощью полупроводниковых диодов
- •§ 14.3 Применение
- •Тема 15 Интегральные схемы § 15.1 Интегральные микросхемы
- •§ 15.2 Пленочные и гибридные интегральные микросхемы
- •Тема 16 Полупроводниковые интегральные схемы § 16.1 Элементы полупроводниковых интегральных схем
Тема 7 Поверхностные явления
§ 7.1 Эффект поля. Структура металл – диэлектрик – полупроводник (мдп-структура)
Эффектом поля называют изменение концентрации носителей (а, значит, и проводимости) в приповерхностном слое полупроводника под действием электрического поля. Слой с повышенной (по сравнению с объемом) концентрацией основных носителей называют обогащенным, а слой с пониженной их концентрацией — обедненным.
Пусть между металлической пластинкой и полупроводником, разделенными диэлектриком (например, воздухом) задано напряжение U (рисунок 7.1). Ясно, что в системе МДП (металл – диэлектрик – полупроводник) протекание тока невозможно. Поэтому такая система равновесна и представляет собой своеобразный конденсатор, у которого одна из обкладок полупроводниковая. На этой обкладке будет наведен такой же заряд, как и на металлической. Однако в отличие от металла заряд в полупроводнике не сосредоточивается на поверхности, а распространяется на некоторое расстояние в глубь кристалла.
Рисунок 7.1 – Эффект поля в структуре металл – диэлектрик – полупроводник
Электрическое поле, созданное напряжением U, распределяется между диэлектриком и полупроводником. Поле в диэлектрике ЕД постоянное (так как в диэлектрике нет объемных зарядов), а поле в полупроводнике заведомо непостоянное, так как заряд спадает от поверхности в глубь полупроводника.
Знак заряда в полупроводнике зависит от полярности приложенного напряжения. При отрицательной полярности (рисунок 7.1) наведенный заряд положительный. В дырочном полупроводнике положительный заряд обусловлен дырками, которые притянулись к поверхности, а в электронном полупроводнике — ионами доноров, от которых оттолкнулись электроны, компенсировавшие их заряд. Значит, в первом случае происходит обогащение, а во втором — обеднение приповерхностного слоя основными носителями. При положительной полярности напряжения, наоборот, в
электронном полупроводнике происходит обогащение приповерхностного слоя электронами, а в дырочном — обеднение дырками и «обнажение» отрицательных акцепторных ионов.
Протяженность подвижных зарядов в обогащенном слое называют длиной Дебая или дебаевской длиной, а протяженность неподвижных ионных зарядов — глубиной обедненного слоя. Обе эти величины рассматриваются ниже. Обогащенные и обедненные слои оказываются тем тоньше, чем больше концентрация примеси, а значит, и концентрация основных носителей. Иначе говоря, тонкие слои свойственны низкоомным полупроводникам, а толстые — высокоомным.
Если принять потенциал в объеме полупроводника равным нулю, то потенциал поверхности будет отличен от нуля благодаря наличию зарядов между объемом и поверхностью. Разность потенциалов между поверхностью и объемом называют поверхностным потенциалом и обозначают через cpS.
Следует заметить, что в отсутствие внешнего напряжения поверхностный потенциал не падает до нуля, а имеет конечную равновесную величину фS0. Она обусловлена наличием поверхностных состояний, которые способны захватывать или отдавать электроны на сравнительно длительное время. Еще одним фактором, влияющим на величину (pS0 является контактная разность потенциалов между металлом и полупроводником. Внешнее напряжение, необходимое для того, чтобы скомпенсировать равновесный поверхностный потенциал, называется напряжением спрямления зон и обозначается через UF (от Flat Band — плоские зоны).
Как уже отмечалось, электрическое поле распределяется между диэлектриком и полупроводником. Поле в диэлектрике возрастает при уменьшении расстояния d Расстояние d не может быть произвольно малым: при условии d < 10 нм диэлектрик становится проницаемым для подвижных носителей благодаря туннельному эффекту. При этом структура МДП перестает быть аналогом конденсатора: обмен носителями через диэлектрик вызывает протекание тока, а значит, нарушает равновесное состояние.
Распределение потенциала в области объемного заряда можно оценить с помощью одномерного уравнения Пуассона
d
<Р
dx
2
0s
(7.1)
52
Для данного случая уравнение Пуассона является нелинейным дифференциальным уравнением, которое в общем случае не имеет аналитического решения. Однако для частных случаев для собственного и примесного полупроводника решения существуют.