Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
щпоря по термеху.doc
Скачиваний:
5
Добавлен:
01.03.2025
Размер:
1.32 Mб
Скачать

§6. Интегралы движения в методе Лагранжа.

Динамические переменные в методе Лагранжа – это обобщённые координаты и обобщённые скорости. Всего их 2n, они задают начальное состояние систем.

Интеграл движения – это функция динамических переменных и времени , сохраняющая своё значение при движении системы (в КП).

- постоянство означает, что полная производная по времени должна быть равна нулю:

При n=1 имеем:

, .

§7. Свойства симметрии пространства и времени. Законы сохранения.

Рассмотрим замкнутую систему.

Замкнутая система материальных точек – это система точек, взаимодействующих между собой и не взаимодействующих с точками, не принадлежащими, данной системе.

1 .Для замкнутой системы реализуется принцип однородности времени.

Это означает, что мы по временной оси начало отсчёта можем выбрать произвольно. Допустим, мы вели наблюдения в течение времени , этот отрезок времени можно на оси t взять в любом месте, процесс не изменится. Вследствие однородности времени для замкнутых систем функция Лагранжа явно не зависит от времени, т.е.

Найдём производную функции Лагранжа по времени:

Подставим второе уравнение в первое:

В силу уравнения движения Лагранжа:

Тогда:

-> ->

- интеграл движения, но только для стационарных связей.

В случае многих степеней свободы:

В случае стационарных связей кинетическая энергия есть квадратичная форма скоростей.

- коэффициенты, имеющие не обязательно смысл массы.

В силу теоремы Эйлера об однородных функциях:

2.Однородность пространства.

Пространство называется однородным, если уравнения движения (эволюции) системы не зависят от трансляции (переноса как целого) системы в пространстве.

Уравнения движения замкнутой системы инвариантны относительно пространственных трансляций системы как целого. В этом случае реализуется закон сохранения импульса:

или

, ,

Для замкнутой системы:

Иногда системы, будучи не замкнутыми, допускают трансляции вдоль некоторых осей. Например, система в однородном поле силы тяжести, допускает трансляции, в плоскости ортогональной вектору напряжённости этого поля -

- у поверхности Земли.

3. Изотропность пространства.

Уравнения движения замкнутой системы не изменяются при вращении системы как целого относительно любой оси. Другими словами, уравнения движения инвариантны относительно вращения вокруг любой оси. В этом случае реализуется закон сохранения момента импульса:

- момент импульса материальной точки a.

Для незамкнутой системы существуют поля, допускающие вращение системы как целого относительно некоторых осей.

Центр Земли – это центр поля тяготения. Вращение вокруг любой оси, проходящей через центр симметрии, не меняет уравнения движения.

§8. Обобщенный импульс. Преобразование Лежандра.

Уравнения Гамильтона.

Каждой обобщенной координате соответствует обобщенный импульс:

Рассмотрим функцию :

перейдем от к

Здесь - функция переменных и . - отсюда находим . Это и есть преобразование Лежандра.

Рассмотрим функцию Лагранжа . От и перейдем к и :

->

- обобщенный импульс

->

используя уравнение Лагранжа , получим:

Мы перешли к переменным , , . По определению:

- функция Гамильтона.

Выразим через и . Из получаем . Запишем :

Сравнивая два этих выражения, получаем:

Это уравнения движения Гамильтона, их так же называют каноническими. Их штук. В отличие от дифференциальных уравнений Лагранжа, которые были 2-го порядка, эти дифференциальных уравнений первого порядка. Для решения уравнений надо задать начальных условий, или динамических переменных в какой-то момент времени: и . и - динамические переменные в методе Гамильтона.

Обратимся к равенству . Величины и называют канонически сопряжёнными величинами (по Гамильтону). Канонические преобразования в методе Гамильтона служат для перехода от одних динамических переменных к другим.

Функцию Гамильтона можно также получить ещё с помощью вариационного метода.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]