Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
2модуль КС.docx
Скачиваний:
1
Добавлен:
01.03.2025
Размер:
214.39 Кб
Скачать
  1. Основные сигналы интерфейса dram

    Динамическая память — DRAM (Dynamic RAM) — получила свое название от принципа действия ее запоминающих ячеек, которые выполнены в виде конденсаторов, образованных элементами полупроводниковых микросхем. При отсутствии обращения к ячейке со временем за счет токов утечки конденсатор разряжается и информация теряется, поэтому такая память требует периодической подзарядки конденсаторов (обращения к каждой ячейке) — память может работать только в динамическом режиме. Этим она принципиально отличается от статической памяти, реализуемой на триггерных ячейках и хранящей информацию без обращений к ней сколь угодно долго (при включенном питании).         Запоминающие ячейки микросхем DRAM организованы в виде двумерной матрицы. Адреса строки и столбца передаются по мультиплексированной шине адреса MA (Multiplexed Address) и стробируются по спаду импульсов RAS# (Row Access Strobe) и CAS# (Column Access Strobe). Состав сигналов микросхем динамической памяти приведен в табл. 7.1.

Таблица 7.1 . Сигналы микросхем динамической памяти

Сигнал

Назначение

RAS#

Row Access Strobe — строб выборки адреса строки. По спаду сигнала начинается любой цикл обращения; низкий уровень сохраняется на все время цикла. Перед началом следующего цикла сигнал должен находиться в неактивном состоянии (высокий уровень) не менее, чем время предварительного заряда RAS (Т — RAS precharge time)

CAS#

Column Access Strobe — строб выборки адреса столбца. По спаду сигнала начинается цикл записи или чтения; минимальная длительность (ТCAS) определяется спецификацией быстродействия памяти. Минимальная длительность неактивного состояния между циклами (высокий уровень) должна быть не менее, чем время предварительного заряда CAS (TCP — CAS precharge time)

MAi

Multiplexed Address — мультиплексированные линии адреса. Во время спада сигнала RAS# на этих линиях присутствует адрес строки, во время спада CAS# — адрес столбца. Адрес должен устанавливаться до спада соответствующего строба и удерживаться после него еще некоторое время. Микросхемы с объемом 4 М ячеек могут быть с симметричной организацией — 11 бит адреса строк и 11 бит адреса колонок или асимметричными — 12x10 бит соответственно

WE#

Write Enable — разрешение записи. Данные записываются в выбранную ячейку либо по спаду CAS# при низком уровне WE# (Early Write — ранняя запись, обычный вариант), либо по спаду WE# при низком уровне CAS# (Delayed Write — задержанная запись). Переход WE# в низкий уровень и обратно при высоком уровне CAS# записи не вызывает, а только переводит выходной буфер EDO DRAM в высокоимпедансное состояние

ОЕ#

Output Enable — разрешение открытия выходного буфера при операции чтения. Высокий уровень сигнала в любой момент переводит выходной буфер в высокоимпедансное состояние

DB-ln

Data Bit Input — входные данные (только для микросхем с однобитной организацией)

DB-Out

Data Bit Output — выходные данные (только для микросхем с однобитной организацией). Выходные буферы стандартных микросхем открыты только при сочетании низкого уровня сигналов RAS#, CAS#, OE# и высокого уровня WE#; при невыполнении любого из этих условий буферы переходят в высокоимпедансное состояние. У микросхем EDO выходные буферы открыты и после подъема CAS#. Логика управления предусматривает возможность непосредственного объединения выходов нескольких микросхем

DQx

Data Bit — объединенные внутри микросхемы входные и выходные сигналы данных (объединение экономит количество выводов для микросхем с многобитной организацией)

N.C.

No Connection — свободный вывод