
- •1 Кинематика материальной точки. Тело отсчета. Прямолинейное движение. Движение тела в пространстве. Декартова система координат. Система отсчета.
- •2 Радиус-вектор, скорость и ускорение материальной точки, их связь с декартовыми координатами.
- •3 Движение по криволинейной траектории. Тангенциальное и нормальное ускорения.
- •4 Кинематика твердого тела. Поступательное движение твердого тела. Вращение тела вокруг неподвижной оси. Угловая скорость вращения. Вектор угловой скорости. Угловое ускорение.
- •5 Первый закон Ньютона – закон инерции. Инерциальная система отсчета.
- •7 Третий закон Ньютона. Формулирование задачи движения материальных точек. Начальные условия.
- •10 Неинерциальные системы отсчета. Силы инерции.
- •11 Замкнутая система. Законы сохранения. Связь законов сохранения со свойствами пространства и времени.
- •12 Закон сохранения импульса
- •13 Момент силы и момент импульса относительно неподвижного начала. Их связь.
- •14 Закон сохранения момента импульса
- •15 Работа и кинетическая энергия
- •16 Консервативные и неконсервативные силы. Потенциальная энергия. Примеры потенциальной энергии.
- •17 Закон сохранения и изменения механической энергии
- •18 Абсолютно неупругий и абсолютно упругий удары.
- •19 Механика абсолютно твердого тела. Вращение вокруг неподвижной оси. Момент инерции.
- •20 Теорема Гюйгенса-Штейнера. Вычисление моментов инерции. Примеры.
- •21 Колебания. Разные типы колебаний.
- •22 Гармонические колебания. Основные характеристики колебательного процесса. Дифференциальное уравнение гармонических колебаний.
- •23 Пружинный маятник. Энергия маятника.
- •24 Физический маятник.
- •25 Затухающие колебания. Дифференциальное уравнение, вид решения, график,
- •26 Вынужденные колебания. Резонанс.
- •27 Волновые процессы. Уравнение плоской волны. Дифференциальное уравнение плоской волны.
- •28 Макроскопическая система большого количества молекул. Ее параметры. Равновесная система.
- •29 Массы и размеры молекул. Атомная масса. Молярная масса.
- •30 Уравнение идеального газа.
- •31 Распределение молекул по скоростям в идеальном газе.
- •32 Газ во внешнем потенциальном поле. Распределение Больцмана. Барометрическая формула.
- •33 Степени свободы. Теорема о равнораспределении энергии по степеням свободы.
- •34 Теплопередача. Макроскопическая работа. Первый закон (начало) термодинамики. Применение к изопроцессам.
- •35 Явления переноса. Средняя длина свободного пробега.
- •36 Диффузия.
- •37 Теплопроводность.
- •38 Взаимодействие зарядов. Их знаки. Единичный заряд. Закон Кулона.
- •39 Напряженность электростатического поля. Определение. Напряженность точечного заряда. Силовые линии.
- •41 Электрический диполь. Дипольный момент. Напряженность диполя на больших расстояниях.
- •41 Поток вектора и теорема Гаусса.
- •42,43 Потенциал электростатического поля. Потенциал точечного заряда. Консервативность электростатического поля
- •44 Проводники в электрическом поле.
- •45 Поляризация диэлектриков. Поляризуемость. Вектор электрического смещения. Электрическая проницаемость.
- •46 Электрический ток. Вектор плотности тока. Закон сохранения заряда в интегральном и дифференциальном виде.
- •47 Закон Ома в дифференциальном и интегральном виде. Удельная проводимость и удельное сопротивление.
- •48 Действие магнитного поля на проводники с током и движущиеся заряды.
- •49 Магнитное поле равномерно движущегося заряда. Закон Био—Савара.
- •50 Магнитное поле бесконечного прямого провода и витка с током.
- •51 Теорема Гаусса для магнитного поля. Циркуляция магнитного поля.
- •52 Магнитное поле в веществе. Различные типы магнетиков.
- •53 Емкость проводников и конденсаторов. Емкость шарового конденсатора.
- •54 Энергия заряженного конденсатора. Плотность электрической энергии. Энергия системы заряженных тел.
- •55 Электромагнитная индукция
- •56 Магнитный поток
- •57 Работа при перемещении витка с током в постоянном магнитном поле.
- •58 Самоиндукция. Коэффициенты индуктивности.
- •59 Энергия магнитного поля.
- •60 Ток смещения.
- •61 Система уравнений Максвелла.
- •62 Следствия из уравнений Максвелла.
- •63 Электромагнитные волны.
5 Первый закон Ньютона – закон инерции. Инерциальная система отсчета.
1. За первый закон движения Ньютон принял закон инерции, высказанный в частной форме еще Галилеем. Согласно этому закону тело, не подверженное внешним воздействиям, либо находится в покое, либо движется прямолинейно и равномерно. Такое тело называется свободным.
Свободных тел не существует. Поэтому они являются физическими абстракциями. Однако можно поставить тело в такие условия, когда внешние воздействия на него по возможности устранены или практически компенсируют друг друга. Представив, что эти воздействия беспредельно уменьшаются, мы и приходим в пределе к представлению о свободном теле и свободном движении.
2. Закон инерции не может быть справедлив во всех системах отсчета. Классическая механика постулирует, что существует система отсчета, в которой все свободные тела движутся прямолинейно и равномерно. Такая система называется инерциальной системой отсчета. Таким образом, содержание закона инерции сводится к утверждению, что существует по крайней мере одна инерциальная система отсчета.
3. Земная система отсчета не может быть точно инерциальной, так как Земля испытывает два вращательных движения: вокруг собственной оси и вокруг Солнца. Однако эти движения происходят относительно медленно и для множества движений можно считать, что земная система отсчета инерциальна. Нужны специальные опыты, чтобы вскрыть ее инерциальность.
Гелиоцентрическая система отсчета, оси в которой направлены на почти неподвижные удаленные звезды, еще лучше удовлетворяет требованию инерциальности. В этой системе можно изучать движение тел, малых по сравнению с размерами Галактики.
4. То есть, если существует класс движений, который мы желаем изучать, то всегда можно построить систему отсчета, которая будет инерциальной для данного класса движений.
6 Масса. Импульс. Второй закон Ньютона. Сила.
1. Всякое тело оказывает сопротивление при попытках привести его в движение или изменить модуль или направление его скорости. Это свойство называется инертностью. У разных тел оно проявляется в разной степени. Мера инертности называется массой.
Для сравнения масс можно применить закон сохранения импульса, который будет сформулирован позднее. Из этого закона можно найти отношение масс. Для перехода от отношения масс к массам как таковым, необходимо выбрать эталон массы.
2. За эталон выбрана масса международного эталона килограмма, хранящегося в Международном бюро мер и весов (расположено в г. Севр близ Парижа) и представляющего собой цилиндр диаметром и высотой 39.17 мм из платино-иридиевого сплава (90 % платины, 10 % иридия). Первоначально килограмм определялся как масса одного кубического дециметра (литра) чистой воды при температуре 4 °C и стандартном атмосферном давлении на уровне моря.
3. Для формулировки второго закона Ньютона введем понятие импульса. Импульсом или количеством движения МТ называется вектор, равный произведению массы точки на ее скорость:
.
Импульсом или количеством движения системы материальных точек назовем сумму импульсов отдельных материальных точек:
Эти
формулы годятся для медленных движений
(
).
В случае скоростей, близких к скорости
света, формула для импульса МТ должна
быть изменена.
4. Для формулировки второго закона Ньютона надо ввести понятие силы. Силой в механике считают всякую причину, изменяющую импульс тела. Это качественное определение.
Количественное
определение: в инерциальной системе
отсчета производная импульса
МТ
по времени представляется уравнением:
Отсюда, второй закон Ньютона: в инерциальной системе отсчета производная импульса МТ по времени равна действующей на нее силе. Для медленных движений и постоянной массе эту формулу можно представить в виде:
Здесь
однозначно
определяется свойствами рассматриваемой
МТ и окружающих ее тел, а также положениями
и скоростями этих тел относительно МТ.
Величина
называется
слой, действующей на рассматриваемую
МТ. В частных случаях сила может
определяться только положением или
только одной ее скоростью, но не может
явно зависеть от ускорения этой точки.
Из закона следует, что сила – вектор, и
сложение сил подчиняется правилу
параллелограмма.
Это уравнение не есть способ определения силы. Силы должны определятся как-нибудь по-другому. Например, с помощью динамометра. Подробности в учебнике.
3.
Рассмотрим соотношение между первым и
вторым законами Ньютона. Если положить
,
то получится
.
Отсюда следует, что
,
т.е. импульс, а с ним и скорость свободно
движущейся МТ постоянны. Таким образом,
формально первый закон Ньютона следует
из второго. Однако формула, определяющая
второй закон Ньютона, имеет смысл только
в инерциальных системах отсчета, а для
введения таких систем требуется
отдельный, первый закон Ньютона.
4. Второй закон Ньютона позволяет ввести единицу силы. В системе СИ такая единица называется ньютон (Н). Один ньютон = эта сила, которая массе в 1 кг сообщает ускорение в 1 м/с2.Есть другая система, очень любимая физиками, СГС (сантиметр (см), грамм (г), секунда (с)). В этой системе единица силы называется дина (дин).