
- •1. Что такое Пк, микропроцессор, сходства отличия с микроконтроллером. Cisc и risc .
- •2. Типы микропроцессорных систем
- •4. Типы связей в мп. Классическая шинная структура связей в мп и мк. Типы выходов цифровых микросхем, их преимущества и недостатки.
- •7. Организация прерываний в мпс. Источники внутренних запросов прерываний. Типы прерываний (векторные, радиальные, пдп, др.), их особенности и отличия.
- •8. Функция память в мпс
- •9.Основные методы адресации:
- •10 Регисты мпс
- •11.Система команд процессора
- •12. Назначение портов ввода/вывода: однонаправленные, двунаправленные, мультиплексированные. Типовая схема двунаправлено порта ввода/вывода мк.
- •13. Таймеры, счетчики и процессоры событий. Причины использование указанных устройств в мпс. Основные функции и режимы работы.
- •14. Модули ввода/вывода: параллельного, последовательного, аналогового ввода/вывода. Особенности применения ацп и цап в мпс, основные параметры.
- •15. Этапы разработки мпс на основе мк. Учет основных характеристик мк. Разработка, отладка и инструментарий: аппаратных средств, программного обеспечения, совместной отладки.
- •16. Архитектура мпс на основе пк ibm pc. Основные узлы: цп, память, контролеры прерываний, регенерации, пдп, платы расширения, тактовый генератор, таймеры и др.
- •18. Память пк. Оперативная память, постоянная память, внешняя память. Их взаимодействие с цп и и другими устройствами мпс.
- •19. Интерфейсы компьютера. Системная магистраль isa, основные характеристики. Назначение основных сигналов isa. Циклы обмена по isa.
- •20. Распределение ресурсов компьютера и его инструментарий на примере увв. Основные особенности, технология автоматического распределения ресурсов Plug-n-play (PnP).
- •21. Интерфейсы компьютера. Интерфейс шины pci. Назначение основных сигналов pci. Основные отличия pci от isa, основные характеристики.
- •22. Интерфейсы компьютера. Внутренние i2с, spi. Внешние rs-232c, Centronics, ps/2(клавиатуры и мыши);usb. Их основные характеристики.
- •23. Встроенные системы на основе мпс. Основные характеристики и идеология развития. Области применения. Разработка проекта вс.
22. Интерфейсы компьютера. Внутренние i2с, spi. Внешние rs-232c, Centronics, ps/2(клавиатуры и мыши);usb. Их основные характеристики.
I²C— последовательная шина данных для связи интегральных схем, разработанная фирмой Philips в начале 1980-х как простая шина внутренней связи для создания управляющей электроники. Используется для соединения низкоскоростных периферийных компонентов с материнской платой, встраиваемыми системами и мобильными телефонами. Название представляет собой аббревиатуру слов Inter-Integrated Circuit.
I²C использует две двунаправленные линии, подтянутые к напряжению питания и управляемые через открытый коллектор или открытый сток — последовательная линия данных (SDA, англ. Serial DAta) и последовательная линия тактирования (SCL, англ. Serial CLock). Стандартные напряжения +5 В или +3,3 В, однако допускаются и другие.
Классическая адресация включает 7-битное адресное пространство с 16 зарезервированными адресами. Это означает до 112 свободных адресов для подключения периферии на одну шину.
Основной режим работы — 100 кбит/с; 10 кбит/с в режиме работы с пониженной скоростью. Заметим, что стандарт допускает приостановку тактирования для работы с медленными устройствами.
После пересмотра стандарта в 1992 году становится возможным подключение ещё большего количества устройств на одну шину (за счёт возможности 10-битной адресации), а также увеличивается скорость до 400 кбит/с в скоростном режиме. Соответственно, доступное количество свободных узлов выросло до 1008. Максимальное допустимое количество микросхем, подсоединенных к одной шине, ограничивается максимальной емкостью шины в 400 пФ.
Версия стандарта 2.0, выпущенная в 1998 году представила высокоскоростной режим работы со скоростью до 3,4 Мбит/с с пониженным энергопотреблением. Версия 2.1 2001 года включила лишь незначительные доработки.
Преимущества
необходим всего один микроконтроллер для управления набором устройств;
используется всего две линии ввода-вывода общего назначения;
стандарт предусматривает «горячее» подключение и отключение устройств в процессе работы системы
встроенный в микросхемы фильтр подавляет всплески, обеспечивая целостность данных.
SPI (англ. Serial Peripheral Interface, SPI bus — последовательный периферийный интерфейс, шина SPI) — последовательный синхронный стандарт передачи данных в режиме полного дуплекса, разработанный компанией Motorola для обеспечения простого и недорогого сопряжения микроконтроллеров и периферии. SPI также иногда называют четырёхпроводным (англ. four-wire) интерфейсом.
В отличие от стандартного последовательного порта (англ. standard serial port), SPI является синхронным интерфейсом, в котором любая передача синхронизирована с общим тактовым сигналом, генерируемым ведущим устройством (процессором). Принимающая (ведомая) периферия синхронизирует получение битовой последовательности с тактовым сигналом. К одному последовательному периферийному интерфейсу ведущего устройства-микросхемы может присоединяться несколько микросхем. Ведущее устройство выбирает ведомое для передачи, активируя сигнал «выбор кристалла» (англ. chip select) на ведомой микросхеме. Периферия, не выбранная процессором, не принимает участия в передаче по SPI.
В SPI используются четыре цифровых сигнала:
MOSI или SI — выход ведущего, вход ведомого (англ. Master Out Slave In). Служит для передачи данных от ведущего устройства ведомому.
MISO или SO — вход ведущего, выход ведомого (англ. Master In Slave Out). Служит для передачи данных от ведомого устройства ведущему.
SCLK или SCK — последовательный тактовый сигнал (англ. Serial Clock). Служит для передачи тактового сигнала для ведомых устройств.
CS или SS — выбор микросхемы, выбор ведомого (англ. Chip Select, Slave Select).
RS-232 — используемый в телекоммуникациях стандарт последовательной асинхронной передачи двоичных данных между терминалом и коммуникационным устройством. Информация передается по проводам цифровым сигналом с двумя уровнями напряжения. Логическому "0" соответствует положительное напряжение (от +5 до +15 В для передатчика), а логической "1" отрицательное (от -5 до -15 В для передатчика). Асинхронная передача данных осуществляется с фиксированной скоростью при самосинхронизации фронтом стартового бита.
Основные характеристики
Физическая реализация - разъем
Количество контактов - 9 или 25
Количество подключаемых устройств - стандартно 1, но существуют расширения протокола, позволяющие подключать до 256 устройств
Количество разрядов данных - от 5 до 9
Скорость передачи данных - 110 ... 115200 бит/с
Расстояние - стандартное до 15 м, в большинстве случаев при уменьшении скорости передачи может быть увеличено.
Особенности данного интерфейса - весьма низкая скорость передачи (около 10 КБайт/с), относительная удаленность объекта обмена информацией от компьютера, применение стандартного интерфейса для подключения к компьютеру без его вскрытия.
Интерфейс Centronics и стандарт IEEE 1284
Параллельный порт Centronics — порт, используемый с 1981 года в персональных компьютерах фирмы IBM для подключения печатающих устройств, разработан фирмой Centronics Data Computer Corporation; уже давно стал стандартом де-факто, хотя в действительности официально на данный момент он не стандартизирован.
Изначально этот порт был разработан только для симплексной (однонаправленной) передачи данных, так как предполагалось, что порт Centronics должен использоваться только для работы с принтером. Впоследствии разными фирмами были разработаны дуплексные расширения интерфейса (byte mode, EPP, ECP). Затем был принят международный стандарт IEEE 1284, описывающий как базовый интерфейс Centronics, так и все его расширения.
Базовый интерфейс Centronics является однонаправленным параллельным интерфейсом, содержит характерные для такого интерфейса сигнальные линии (8 для передачи данных, строб, линии состояния устройства).
Данные передаются в одну сторону: от компьютера к внешнему устройству. Но полностью однонаправленным его назвать нельзя. Так, 4 обратные линии используются для контроля за состоянием устройства. Centronics позволяет подключать одно устройство, поэтому для совместного очерёдного использования нескольких устройств требуется дополнительно применять селектор.
Скорость передачи данных может варьироваться и достигать 1,2 Мбит/с.
PS/2— компьютерный порт (разъём), применяемый для подключения клавиатуры и мыши. Впервые появился в 1987 году на компьютерах IBM PS/2 и впоследствии получил признание других производителей и широкое распространение в персональных компьютерах и серверах. Скорость передачи данных — от 80 до 300 Кб/с и зависит от производительности подключенного устройства и программного драйвера.
USB — последовательный интерфейс передачи данных для среднескоростных и низкоскоростных периферийных устройств в вычислительной технике. Первые спецификации для USB 1.0 были представлены в 1994—1995 годах.
Кабель USB состоит из 4 медных проводников — 2 проводника питания и 2 проводника данных в витой паре — и заземленной оплётки (экрана).
USB 1.0
Спецификация выпущена 15 января 1996 года.
Технические характеристики:
два режима данных:
o режим с высокой пропускной способностью (Full-Speed) — 12 Мбит/с
o режим с низкой пропускной способностью (Low-Speed) — 1,5 Мбит/с
максимальная длина кабеля для режима с высокой пропускной способностью — 3 м
максимальная длина кабеля для режима с низкой пропускной способностью — 5 м
максимальное количество подключённых устройств (включая размножители) — 127
возможно подключение устройств, работающих в режимах с различной пропускной способностью к одному контроллеру USB
напряжение питания для периферийных устройств — 5 В
максимальный ток, потребляемый периферийным устройством — 500 мА
Последующие спецификации – USB 1.1, 2.0, OTG, Wireless, 3.0.
USB 2.0 Спецификация выпущена в апреле 2000 года. Отличается от USB 1.1 введением режима Hi-speed.
Для устройств USB 2.0 регламентировано три режима работы:
Low-speed, 10—1500 Кбит/c (клавиатуры, мыши, джойстики)
Full-speed, 0,5—12 Мбит/с (аудио-, видеоустройства)
High-speed, 25—480 Мбит/с (видеоустройства, устройства хранения информации)