
- •Глава 1. Ось и отрезок оси. Координаты на прямой
- •Глава 2. Декартовы прямоугольные координаты на плоскости
- •Глава 3. Полярные координаты
- •Глава 4. Направленный отрезок. Проекция отрезка на произвольную ось. Проекция отрезка на координатные оси. Длина и полярный угол отрезка. Расстояние между двумя точками
- •Глава 5. Деление отрезка в данном отношении
- •Глава 6. Площадь треугольника
- •Глава 7. Преобразование координат
- •Глава 12. Общее уравнение прямой. Уравнение прямой с угловым коэффициентом. Угол между двумя прямыми. Условие параллельности и перпендикулярности двух прямых
- •Глава 13. Неполные уравнения прямой. Совместное исследование уравнение двух и трех прямых. Уравнение прямой "в отрезках"
- •Глава 14. Нормальное уравнение прямой. Расстояние от точки до прямой
- •Глава 15. Уравнение пучка прямых
- •Глава 16. Полярное уравнение прямой
- •Глава 17. Окружность
- •Глава 18. Эллипс
- •Глава 19. Гипербола
- •Глава 20. Парабола
- •Глава 21. Полярное уравнение эллипса, гиперболы, параболы
- •Глава 22. Диаметры линий второго порядка
- •Глава 23. Центр линии второго порядка
- •Глава 24. Приведение уравнения центральной линии второго порядка к простейшему виду
- •Глава 29. Понятие вектора. Проекции вектора
- •Глава 31. Скалярное произведение векторов
- •Глава 32. Векторное произведение векторов
- •Глава 34. Двойное векторное произведение
Глава 31. Скалярное произведение векторов
Скалярным произведением двух векторов называется число, равное произведению модулей этих векторов на косинус угла между ними.
Скалярное
произведение векторов
,
обозначается
символом
(порядок
записи сомножителей безразличен, то
есть
).
Если угол между векторами , обозначить через , то их скалярное произведение можно выразить формулой
(1)
Скалярное произведение векторов , можно выразить также формулой
,
или
.
Из
формулы (1) следует, что
,
если
-
острый угол,
,
если
-
тупой угол;
в
том и только в том случае, когда
векторы
и
перпендикулярны
(в частности,
,
если
или
).
Скалярное
произведение
называется
скалярным квадратом вектора и обозначается
символом
.
Из формулы (1) следует, что скалярный
квадрат вектора равен квадрату его
модуля:
.
Если векторы и заданы своими координатами:
,
,
то их скалярное произведение может быть вычислено по формуле
.
Отсюда следует необходимое и достаточное условие перпендикулярности двух векторов
.
Угол между векторами
, ,
дается
формулой
,
или в координатах
.
Проекция
произвольного вектора
на
какую-нибудь ось u определяется
формулой
,
где
-
единичный вектор, направленный по оси u.
Если даны углы
,
,
,
которые оси u составляет
с координатными осями, то
и
для вычисления вектора
может
служить формула
.
Глава 32. Векторное произведение векторов
Векторным
произведением вектора
на
вектор
называется
вектор, обозначаемый символом
и
определяемый следующими тремя условиями:
1).
Модуль вектора
равен
,
где
-
угол между векторами
и
;
2). Вектор перпендикулярен к каждому из вектора и ;
3). Направление вектора соответствует «правилу правой руки». Это означает, что если векторы , и приведены к общему началу, то вектор должен быть направлен так, как направлен средний палец правой руки, больой палец которой направлен по первому сомножителю (то есть по вектору ), а указательный - по второму (то есть по вектору ).
Векторное произведение зависит от порядка сомножителей, именно:
.
Модуль векторного произведения равен площади S параллелограмма, построенного на векторах и :
.
Само векторное произведение может быть выражено формулой
,
где - орт векторного произведения.
Векторное
произведение
обращается
в нуль тогда и только тогда, когда
векторы
и
коллинеарны.
В частности,
.
Если система координатных осей правая и векторы и заданы в этой системе своими координатами:
, ,
то векторное произведение вектора на вектор определяется формулой
,
или
.
Глава 34. Двойное векторное произведение
Пусть
вектор
умножается
векторно на вектор
,
после чего полученный вектор
умножается
снова векторно на вектор
.
В результате получается так называемое
двойное векторное произведение
(ясно,
что
-
вектор). Умножая вектор
векторно
на
,
получим двойное векторное произведение
.
Вообще говоря,
.
Докажем, что имеет место тождество
.
ДОКАЗАТЕЛЬСТВО. Введем (декартову прямоугольную) систему координат. Чтобы облегчить выкладки, расположим оси координат специальным образом, а именно: ось Ох направим по вектору , ось Оу поместим в плоскости векторов и (считая, что векторы и приведены к общему началу). В таком случае будем иметь
,
.
.
Теперь находим
,
.
С другой стороны
,
,
,
.
Следовательно,
.
Сравнивая правые части формул (1) и (2), получаем
,
что и требовалось доказать.