Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Vysshaya_matematika_formuly.docx
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
280.14 Кб
Скачать

Глава 1. Ось и отрезок оси. Координаты на прямой

Прямая, на которой выбрано положительное направление, называется осью. Отрезок оси, огрниченный какими-нибудь точками A и B, называется направленным, если сказано, какая из этих точек считается началом отрезка, какая – концом. Направленный отрезок с началом A и концом B обозначается символом  . Величиной направленного отрезка оси называется его длина, взятая со знаком плюс, если направление отрезка (т.е. направление от начала к концу) совпадает с положительным направлением оси, и со знаком минус, если это направление противоположно положительному направлению оси. Величина отрезка   обозначается символом  , его длина – символом  . Если точки A и B совпадают, то определяемый ими отрезок называется нулевым; очеидно, в этом случае АВ=ВА=0 (направление нулевого отрезка следует считать неопределенным).

Координатой любой точки М прямой а (в установленной системе координат) называется число x, равное величине отрезка ОМ:

Точка О называется началом координат; ее собственная координата равна нулю. В дальнейшем символ М(х) означает, что точка М имеет координату х.

Если   и   - две произвольные точки прямой а, то формула

выражает величину отрезка  , формула

выражает его длину.

Глава 2. Декартовы прямоугольные координаты на плоскости

Декартова прямоугольная система координат определяется заданием линейной единицы для измерения длин и двух взаимно перпендикулярных осей, занумерованных в каком-нибудь порядке.

Точка пересечения осей называется началом координат, а сами оси - координатными осями. Первая из координатных осей называется осью абсцисс, вторая - осью ординат.

Начало координат обозначается буквой О, ось абсцисс - символом Ох, ось ординат - символом Оу.

Координатами произвольной точки М в заданной системе называют числа

( см. рис. 1), где   и   суть проекции точки М на оси Ох и Оу,   обозначает величину отрезка   оси абсцисс,   - величину отрезка   оси ординат. Число х называется абсциссой точки М, число у - ординатой этой же точки. Символ М(х; у) обозначает, что точка М имеет абсциссой число х, а ординатой число у.

Ось Оу разделяет всю плоскость на две полуплоскости; та из них, которая расположена в положительном направлении оси Ох, называется правой, другая - левой. Точно так же ось Оу разделяет плоскость на две полуплоскости; та из них, которая расположена в положительном направлении оси Оу, называется верхней, другая нижней.

Обе координатные оси вместе разделяют плоскость на четыре четверти, которые нумеруют по следующему правилу: первой координатной четвертью называется та, которая лежит одновременно в правой и в верхней полуплоскости, второй - лежащая в левой и в верхней полуплоскости, третьей - лежащая в левой и в нижней полуплоскости, четвертой - лежащая в правой и в нижней полуплоскости.

Глава 3. Полярные координаты

Полярная система координат определяется заданием некоторой точки О, называемой полюсом, исходящего из этой точки луча ОА, называемого полярной осью, и масштаба для измерения длин. Кроме того, при задании полярной системы должно быть сказано, какие повороты вокруг точки О считаются положительными (на чертежах обычно положительными считаются повороты против часовой стрелки).

Полярными координатами произвольной точки М (относительно заданной системы) называются числа   и   (см. рис.). Угол   при этом следует понимать так, как принято в тригонометрии. Число   называется первой координатой, или полярным углом точки М (  называются также амплитудой).

Символ М( ;  ) обозначает, что точка М имеет полярные координаты   и  .

Полярный угол   имеет бесконечно много возможных значений (отличающихся друг от друга на величину вида  , где n - целое положительное число). Значение полярного угла, удовлетворяющее неравенствам  , называется главным.

В случаях одновременного рассмотрения декартовой и полярной систем координат условимся: 1). Пользоваться одним и тем же масштабом, 2). При определении полярных углов считать положительным повороты в том направлении, в каком следует вращать положительную ось абсцисс, чтобы кратчайшим путем совместить ее с положительной осью ординат (таким образом, если оси декартовой системы находятся в обычном расположении, то есть ось Ох направлена вправо, а ось Оу - вверх, то и отсчет полярных углов должен быть обычным, то есть положительными следует считать те углы, которые отсчитываются против часовой стрелки).

При этом условии, если полюс полярной системы координат совпадает с началом декартовых прямоугольных координат, а полярная ось совпадает с положительной полуосью абсцисс, то переход от полярных координат произвольной точки х к декартовым координатам той же точки осуществляется по формулам

.

В этом же случае формулы

являются формулами перехода от декартовых координат к полярным.

При одновременно рассмотрении в дальнейшем двух полярных систем координат условимся считать направление положительных поворотов и масштаб для обеих систем одинаковыми.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]