
- •Математическое моделирование в расчетах на эвм
- •Предисловие
- •Лабораторная работа №1. Основы работы с MathCad
- •Математические выражения
- •Типы данных
- •Операторы
- •Функции
- •Дискретные аргументы
- •Массивы
- •Текстовые фрагменты
- •Графические области
- •Создание анимационного клипа
- •Сообщения об ошибках
- •Порядок выполнения лабораторной работы №1
- •Лабораторная работа №2. Решение уравнений
- •Итерационные методы
- •Решение уравнений средствами MathCad
- •Символьное решение уравнений и систем уравнений
- •Порядок выполнения лабораторной работы №2
- •Лабораторная работа №3. Интерполяция и предсказание
- •Интерполяция
- •Глобальная интерполяция
- •Локальная интерполяция
- •Предсказание
- •Порядок выполнения лабораторной работы № 3
- •Лабораторная работа №4. Математическая обработка результатов экспериментальных данных
- •Метод наименьших квадратов
- •Регрессионный анализ
- •Линейная регрессия
- •Полиномиальная регрессия
- •Обобщенная регрессия
- •Сглаживание
- •Порядок выполнения лабораторной работы № 4
- •Лабораторная работа №5. Численное интегрирование и дифференцирование
- •Квадратурные формулы
- •Метод Монте-Карло
- •Численное дифференцирование
- •Символьное интегрирование и дифференцирование
- •Порядок выполнения лабораторной работы №5
- •Лабораторная работа №6. Решение обыкновенных дифференциальных уравнений
- •Задача Коши
- •Одношаговые методы
- •Многошаговые методы
- •Решение задачи Коши средствами MathCad
- •Краевые задачи
- •Символьное решение линейных дифференциальных уравнений
- •Варианты задания 4
- •Лабораторная работа №7. Решение дифференциальных уравнений в частных производных
- •Метод конечных разностей
- •Гиперболические уравнения в частных производных
- •Параболические уравнения в частных производных
- •Эллиптические уравнения в частных производных
- •Порядок выполнения лабораторной работы 7
- •Лабораторная работа №8. Спектральный анализ и синтез
- •Гармонический анализ и синтез
- •Классический спектральный анализ
- •Численный спектральный анализ
- •Спектральный анализ на основе быстрого преобразования Фурье
- •Фильтрация аналоговых сигналов
- •Порядок выполнения лабораторной работы № 8
- •Библиографический список
- •Содержание
Федеральное агентство по образованию
Государственное образовательное учреждение высшего профессионального образования
«Омский государственный технический университет»
Математическое моделирование в расчетах на эвм
Методические указания для лабораторных работ
Омск
Издательство ОмГТУ
2009
Составитель Д.В. Калекин
Методические указания для лабораторных работ по дисциплинам «Моделирование», «Численные методы», «ЭВМ в инженерных расчетах» предназначены для студентов специальности 240801 «Машины и аппараты химических производств».
Печатается по решению редакционно-издательского совета Омского государственного технического университета
Предисловие
Одной из основных областей применения ПК являются математические и научно-технические расчеты. Сложные вычислительные задачи, возникающие при моделировании технических устройств и процессов, можно разбить на ряд элементарных: вычисление интегралов, решение уравнений, решение дифференциальных уравнений и т. д. Для таких задач уже разработаны методы решения, созданы математические системы, доступные для изучения студентам младших курсов втузов.
Настоящий практикум содержит восемь лабораторных работ, охватывающих следующие разделы: решение уравнений и систем, интегрирование и дифференцирование, аппроксимация и элементы математической статистики, обыкновенные дифференциальные уравнения, уравнения в частных производных, спектральный анализ и синтез. Цель практикума — научить пользоваться простейшими методами вычислений с использованием современных информационных технологий. Наиболее подходящей для этой цели является одна из самых мощных и эффективных математических систем — MathCAD, которая занимает особое место среди множества таких систем, как Matlab, Maple, Mathematica и др. MathCAD остается единственной системой, в которой описание решения математических задач задается с помощью привычных математических формул и знаков. MathCAD позволяет выполнять как численные, так и аналитические (символьные) вычисления, имеет чрезвычайно удобный математико-ориентированный интерфейс и прекрасные средства научной графики.
Лабораторная работа №1. Основы работы с MathCad
MathCAD работает с документами. С точки зрения пользователя, документ это чистый лист бумаги, на котором можно размещать области трех основных типов: математические выражения, текстовые фрагменты и графические области.
Математические выражения
К основным элементам математических выражений MathCAD относятся типы данных, операторы, функции и управляющие структуры.
Типы данных
К типам данных относятся числовые константы, обычные и системные переменные, массивы (векторы и матрицы) и данные файлового типа.
Константами называют поименованные объекты, хранящие некоторые значения, которые не могут быть изменены. Переменные являются поименованными объектами, имеющими некоторое значение, которое может изменяться по ходу выполнения программы. Имена констант, переменных и иных объектов называют идентификаторами. Идентификаторы в MathCAD представляют собой набор латинских или греческих букв и цифр.
В MathCAD содержится небольшая группа особых объектов, которые нельзя отнести ни к классу констант, ни к классу переменных, значения которых определены сразу после запуска программы. Их правильнее считать системными переменными, имеющими предопределенные системой начальные значения.
Обычные переменные отличаются от системных тем, что они должны быть предварительно определены пользователем, т. е. им необходимо хотя бы однажды присвоить значение. В качестве оператора присваивания используется знак :=, тогда как знак = отведен для вывода значения константы или переменной.
Если переменной
присваивается начальное значение с
помощью оператора :=, такое присваивание
называется локальным. До этого присваивания
переменная не определена и ее нельзя
использовать. Однако с помощью знака
можно обеспечить глобальное присваивание.
Существует также жирный знак равенства,
который используется, например, как
оператор приближенного равенства при
решении систем уравнений.