
- •Часть 1 Ядерный взрыв и образование «Ядерной зимы» 5
- •Часть 2 Исследования «Ядерной зимы» 7
- •Часть 3 Последствия «Ядерной зимы» 14
- •Введение
- •Часть 1. Ядерный взрыв и образование «Ядерной зимы».
- •Часть 2. Исследования «Ядерной зимы».
- •Часть 3. Последствия «Ядерной зимы».
- •Выводы.
- •Список литературы.
Часть 1. Ядерный взрыв и образование «Ядерной зимы».
Во всем мире после трагедий Хиросимы и Нагасаки начали изучать последствия возможной ядерной войны - разрушения от мощнейших взрывов, распространение радиации, биологические поражения. В 80-е годы были предприняты исследования, посвященные климатическим эффектам, известным теперь как "ядерная зима".
Огненный шар ядерного взрыва сжигает или обугливает объекты на значительном удалении от эпицентра. Около 1/3 энергии взрыва, произошедшего на небольшой высоте, выделяется в виде интенсивного светового импульса. Так, в 10 км от эпицентра взрыва мощностью 1 Мт световая вспышка в первые секунды в тысячи раз ярче солнца. За это время загораются бумага, ткани и другие легко воспламеняющиеся материалы. Человек получает ожоги третьей степени. Возникающие очаги пламени (первичные пожары) частично гасятся мощной воздушной волной взрыва, но разлетающиеся искры, горящие обломки, брызги горящих нефтепродуктов, короткие замыкания в электросети вызывают обширные вторичные пожары, которые могут продолжаться много дней.
Когда множество независимых пожаров объединяются в один мощный очаг, образуется "огненный смерч", способный уничтожить огромный город (как в Дрездене и Гамбурге в конце второй мировой войны). Интенсивное выделение тепла в центре такого "смерча" поднимает вверх громадные массы воздуха, создавая ураганы у поверхности земли, которые подают все новые порции кислорода к очагу пожара. "Смерч" поднимает до стратосферы дым, пыль и сажу, которые образуют тучу, практически закрывающую солнечный свет, наступает "ядерная ночь" и, как следствие, "ядерная зима".
-5-
Расчеты количества аэрозоля, образующегося после таких пожаров, сделаны, исходя из средней величины 4 г горючего материала на 1 см2 поверхности, хотя в таких городах, как Нью-Йорк или Лондон, ее значение достигает 40 г/см2. По самым осторожным подсчетам, при ядерном конфликте (согласно среднему, так называемому "базовому" сценарию) образуется около 200 млн т аэрозоля, 30% которого составляет сильно поглощающий солнечный свет углерод . В результате район между 30о и 60о с. ш. будет лишен солнечного света на несколько недель.
Гигантские пожары, выделяющие в атмосферу огромное количество дыма и вызывающие "ядерную ночь", до 80-х годов не учитывались учеными при оценках последствий ядерных взрывов.
-6-
Часть 2. Исследования «Ядерной зимы».
Почему же ученые не замечали "ядерную зиму" в 40-70-х годах и можно ли теперь наши знания о последствиях ядерной войны считать окончательными?
Дело в том, что проводившиеся ядерные испытания все-таки были изолированными, одиночными взрывами, в то время как наиболее "мягкий" (100 Мт) сценарий ядерного конфликта, сопровождающийся "ядерной ночью", предусматривает удар по многим крупным городам. Кроме того, запрещенные ныне испытания проводились так, что при этом не возникало больших пожаров. Новые оценки потребовали тесного сотрудничества и взаимопонимания специалистов различных областей науки: климатологов, физиков, математиков, биологов. Только при таком комплексном междисциплинарном подходе, набирающем силу в последние годы, удалось понять всю совокупность взаимосвязанных явлений, казавшихся ранее разрозненными фактами. Немаловажно и то, что "ядерная зима" относится к глобальным проблемам, исследовать которые ученые научились лишь недавно.
Изучение и моделирование глобальных проблем началось по инициативе и под руководством Н.Н. Моисеева в ВЦ РАН в 70-е годы. Это исследование основывалось на представлении о том, что человек - часть биосферы, и его существование немыслимо вне биосферы. Наша цивилизация может выжить лишь в узком диапазоне параметров биосферы. Возрастающая мощь воздействия человека на окружающую среду выдвигает на первый план выбор стратегии развития общества, гарантирующей не только существование, но и совместную эволюцию (коэволюцию) человечества и окружающей среды.
Из известных ныне моделей различной сложности для расчета изменений
-7-
климата в результате термоядерного конфликта одна из наиболее совершенных трехмерная гидродинамическая модель ВЦ РАН. Первые расчеты, проведенные по этой модели В.В. Александровым с коллегами под руководством Н.Н. Моисеева, дают географическое распределение всех метеорологических характеристик в зависимости от времени, прошедшего с момента ядерного конфликта, что делает результаты моделирования чрезвычайно наглядными, реально ощущаемыми. Сходные результаты по согласованному сценарию ядерной войны одновременно получили американские ученые. В дальнейших работах оценены эффекты, связанные с распространением аэрозолей, исследована зависимость характеристик "ядерной зимы" от начального распределения пожаров и высоты подъема сажевого облака. Проведены расчеты и для двух "предельных сценариев", взятых из работы группы К. Сагана: "жесткого" (суммарная мощность взрывов 10 000 Мт ) и "мягкого" (100 Мт).
В первом случае используется примерно 75% суммарного потенциала ядерных держав. Это так называемая всеобщая ядерная война, первичные, немедленные последствия которой характеризуются огромными масштабами гибели и разрушений. Во втором сценарии "расходуется" менее 1% имеющегося в мире ядерного арсенала. Правда, и это 8200 "хиросим" ("жесткий" вариант - почти миллион)!
Сажа, дым и пыль в атмосфере над регионами северного полушария, подвергшимися атакам, из-за глобальной циркуляции атмосферы распространятся на огромные площади, через 2 недели накрыв все Северное полушарие и частично Южное. Немаловажно, сколько времени сажа и пыль будут находиться в атмосфере и создавать непрозрачную пелену. Частицы аэрозоля будут оседать на землю под действием силы тяжести и вымываться дождями. Продолжительность оседания зависит от размера частиц и высоты, на
-8-
которой они оказались. Расчеты с использованием упомянутой модели показали, что аэрозоль в атмосфере сохранится значительно дольше, чем полагали прежде. Дело в том, что сажа, нагреваясь солнечными лучами, станет подниматься вверх вместе с нагретыми ею массами воздуха и выйдет из области образования осадков. Приземный воздух окажется холоднее находящегося выше, и конвекция (включая испарение и выпадение осадков, так называемый круговорот воды в природе) значительно ослабеет, осадков станет меньше, так что аэрозоль будет вымываться гораздо медленнее, чем в обычных условиях. Все это приведет к тому, что "ядерная зима" затянется.
В современных работах 2007, 2008 гг. сделан шаг вперёд по сравнению с пионерами этих изысканий. Компьютерное моделирование показывает, что небольшая ядерная война, когда каждая воюющая сторона использует около 50 зарядов, каждый из которых по мощности равен бомбе, взорванной над Хиросимой, взрывая их в атмосфере над городами, даст беспрецедентный климатический эффект, сравнимый с малым ледниковым периодом. Кстати, 50 зарядов — это примерно 0,3 % от текущего мирового арсенала (2009).
Согласно подсчетам американских учёных Оуэна Туна и Ричарда Турко, Индо-Пакистанская война с использованием боезарядов суммарной мощностью 750 кт привела бы к выбросу в стратосферу 6,6 Мт (6,6 млн. тонн) сажи. Такой степени загрязнения достаточно, чтобы температура на Земле опустилась ниже, чем в 1816 году («Год без лета»). Обмен ядерными ударами между Россией и США с использованием 4400 зарядов мощностью не более 100 кт каждый привел бы к выбросу 150 Мт сажи, тогда как используемая модель расчёта показывает, что уже 75 Мт сажи в стратосфере приведут к моментальному падению значения потока энергии на м² земной поверхности, 25-процентному сокращению осадков и падению температуры ниже значений плейстоценового ледникового периода. Подобная картина сохранялась бы не менее 10 лет, что привело бы к катастрофическим последствиям для сельского хозяйства.
-9-
Концепция «ядерной зимы» основана на долгосрочных моделях изменения климата. В то же время, детальное численное и лабораторное моделирование начальной стадии развития крупномасштабных пожаров показало, что эффект загрязнения атмосферы имеет как локальные, так и глобальные последствия. На основании полученных результатов сделан вывод о возможности ядерной зимы. Противники концепции «ядерной зимы» ссылались на то обстоятельство, что в ходе «ядерной гонки» в 1945—1998 гг. в мире было произведено около 2000 ядерных взрывов различной мощности в атмосфере и под землей. В совокупности, по их мнению, это равно эффекту затяжного полномасштабного ядерного конфликта. В этом смысле «ядерная война» уже состоялась, не приведя к глобальной экологической катастрофе. Однако фундаментальные отличия ядерных испытаний от обмена ударами состоят в том, что:
- Испытания производились над пустыней или водой и не вызывали массовых пожаров и огненных штормов, пыль поднималась в атмосферу только за счёт энергии ядерного взрыва, а не энергии, накопленной в сгораемых материалах, для выделения которой ядерный взрыв является лишь «спичкой».
- При испытаниях поднималась в основном тяжёлая пыль из раздробленных и оплавленных горных пород, имеющая большую плотность и высокое отношение массы к площади, то есть склонная к быстрому оседанию. Сажа от пожаров имеет меньшую плотность и более развитую поверхность, что позволяет ей дольше удерживаться в воздухе и подниматься выше с восходящими потоками.
- Испытания проводились в течение долгого времени, а в случае войны пыль и сажа будут выброшены в воздух одномоментно.
Вместе с тем, по мнению противников концепции «ядерной зимы», такие расчёты не учитывают разработанные ещё в 1960-е годы контрсиловые
-10-
сценарии ядерного конфликта. Речь идет о вариантах ведения военных действий, когда целями для ядерных ударов выступают только пусковые установки противника, а против его городов ядерное оружие не применяется. Выброс сажи в стратосферу как причина «ядерной зимы» так же критикуется как маловероятное событие. При поражении современного города выброс сажи рассчитывается по принципу использования схемы лесного пожара с учетом гораздо большего количества топлива существующего на той же территории. Примером является бомбежка немецких и японских городов во время Второй Мировой Войны («Огненный смерч»). Такая модель конечно предполагает множественные источники возгорания в неразрушенных конструкциях. Поскольку пламя во время пожара гораздо быстрее распространяется по вертикали, чем по горизонтали то стоящие здания образуют благоприятные условия для возникновения массовых пожаров. Мощность термоядерного оружия настолько велика, что при поражении современного города поверхность оплавляется и «сравнивается с землей» тем самым погребая пожароопасный материал под несгораемыми остатками строений. Однако, конечно, некоторые индустриальные объекты бомбежки как, например, нефтехранилища могут являться источниками значительного количества сажи в атмосфере, что может привести к нежелательным последствия местного характера, как и произошло во время войны в Персидском заливе в 1991 году. Температура в Персидском заливе упала на 4-6 градусов, но вопреки существовавшим в то время моделям, дымы не поднялись выше 6 км и не проникли в стратосферу. Позднее сторонники теории Сагана объяснили это тем, что его модель была основана на более быстром образовании сажи, что создало бы условия для проникновения её в стратосферу. Oднако во всех известных случаях возникновения значительных зольных выбросов в атмосферу, как в случае «огненных смерчей» в Европейском ТВД Второй Мировой войны или аналогичного явления в Хиросиме, когда город загорелся из за многочисленных кухонных пожаров в поврежденных зданиях (так как
-11-
большинство населения в то время использовало угольные печи) дымы не поднимались выше уровня тропосферы (5-6 км) и сажа вымывалась дождями в течение нескольких дней после этого (в Хиросиме этот феномен получил название «черный дождь»). Данные полученные во время наблюдения за лесными пожарами так же не подтверждают возможности проникновения значительного количества сажи в стратосферу. Также феномен попадания сажи в высокую тропосферу чаще наблюдается в жарких субтропических регионах и при этом в незначительных количествах неспособных серьёзно повлиять на температуру поверхности. К тому же даже если предположить, что ядерное оружие будет применяться в тропиках, вероятность пожаров там значительно меньше, чем в средних широтах из-за высокой влажности. Во время испытаний ядерного оружия на атолла Бикини и Эниветок пожары не возникли именно по этой причине.
Даже если предположить, что выброс 150 Мт сажи в стратосферу действительно будет иметь место, то последствия этого могут и не быть настолько катастрофичными, как предполагается моделями Карла Сагана. Выбросы значительно большего количества сажи во время извержений вулканов имеют значительно меньший эффект на климат. Например последствия извержения Пинатубо в июне 1991 года когда за несколько дней извержения было выброшено около 10 км³ горных пород и высота эруптивной колонны составляла 34 км (по этому показателю оно уступает в XX веке только извержению Катмай—Новарупта в национальном парке Катмай на Аляске), были ощутимы по всему миру. Оно привело к самому мощному (по шкале вулканических извержений) выбросу аэрозолей в стратосферу со времён извержения вулкана Кракатау в 1883 году. На протяжении следующих месяцев в атмосфере наблюдался глобальный слой сернокислотного тумана. Однако при этом было зарегистрировано падение температуры лишь на 0,5 °C и имело место некоторое сокращение озонового слоя, в частности, образование особо
-12-
крупной озоновой дыры над Антарктидой. Извержение вулкана Тамбора на индонезийском острове Сумбава в 1815 году было гораздо более мощным — было выброшено около 150 км³. Значительное количество вулканического пепла оставалось в атмосфере на высотах до 80 км в течение нескольких лет и вызывало интенсивную окраску зорь, но глобальная температура упала лишь на 2,5 °C . Последствия этого явления, конечно, были весьма тяжелы для сельского хозяйства, уровень которого в то время был весьма примитивным по современным понятиям, но все же не являлись «библейской» катастрофой и не привели к депопуляции регионов, где население голодало в результате неурожаев.
-13-