Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
fizika_ShPORA_1.doc
Скачиваний:
12
Добавлен:
01.03.2025
Размер:
1.03 Mб
Скачать

1. Механическ.Волны. Уравнение плоской волны. Параметры колебаний и волн.

Механические волны – процесс распространения механических колебаний в среде (жидкой, твердой, газообразной).Следует запомнить, что механические волны переносят энергию, форму, но не переносят массу.Важнейшей характеристикой волны является скорость ее распространения. Волны любой природы не распространяются в пространстве мгновенно, их скорость конечна.

По геометрии различают: сферические (пространственные), одномерные (плоские), спиральные волны.

Волна называется плоской, если ее волновые повеpхности пpедставляют собой паpаллельные дpуг дpугу плоскости, пеpпендикуляpные фазовой скоpости волны (pис.1.3). Следовательно, лучи плоской волны - суть паpаллельные пpямые.

Уравнение плоской волны::

Параметры :

Период колебаний Т – промежуток времени, через который состояние системы принимают одинаковые значения: u(t + T) = u(t).

Частота колебаний n – число колебаний в 1 секунду, величина, обратная периоду: n = 1/Т. Измеряется в герцах (Гц), имеет размерность с–1. Маятник, совершающий одно качание в секунду, колеблется с частотой 1 Гц

Фаза колебаний j – величина, показывающая, какая часть колебания прошла с начала процесса. Измеряется в угловых величинах – градусах или радианах.

Амплитуда колебаний А – максимальное значение, которое принимает колебательная система, «размах» колебания.

4.Эффе́кт До́плера — изменение частоты и длины волн, воспринимаемых наблюдателем(приемником волн), вследствие относительного движения источника волн и наблюдателя. Представим, что наблюдатель приближается с определенной скоростью к неподвижному источнику волн. При этом он встречает за один и тот же интервал времени больше волн, чем при отсутствии движения. Это означает, что воспринимаемая частота больше частоты волны, испускаемой источником. Так длина волны, частота и скорость распространения волны связаны между собой соотношением V= / , - длина волны.

Дифракция- явление огибания препятствий, к-ые сравнимы по своим размерам с длиной волны.

Интерференция- явление, при к-ром в результате наложения когерентных волн возникает либо усиление либо ослабление колебаний.

Опыт Юнга Первым интерференционным опытом, получившим объяснение на основе волновой теории света, явился опыт Юнга (1802 г.). В опыте Юнга свет от источника, в качестве которого служила узкая щель S, падал на экран с двумя близко расположенными щелями S1 и S2. Проходя через каждую из щелей, световой пучок уширялся вследствие дифракции, поэтому на белом экране Э световые пучки, прошедшие через щели S1 и S2, перекрывались. В области перекрытия световых пучков наблюдалась интерференционная картина в виде чередующихся светлых и темных полос.

2.Звук-механич.продольн.волна,к-ая распростр-ся в упругих средах, имеет частоту от 16Гц до 20кГц. Различают виды звуков:

1.простой тон- чисто гармоническ.колебание,излучаемое камертоном(металлич. инструмент,издающий при ударе звук):

2.сложный тон- не синусоидально, но периодическое колебание (излучается различными музык.инструментами).

По теореме Фурье такое сложное колебание можно представить набором гармонических составляющих с разными частотами. Наим.частота наз-ся основным тоном,а кратные частоты – обертонами. Набор частот с указанием их относительной интенсивности(плотности потока энергии волны) наз-ся акустическим спктром. Спктр сложного тона линейсатый.

3.шум- звук,к-ый получается от сложения множества несогласованных источников. Спектр- непрерывистый (сплошной):

4.звуковой удар- кратковременное звуковое воздействие.Н-р: хлопок, взрыв.

Волновое сопротивление- отношение звукового давления в плоской волне к скорости колебания частиц среды. Характеризует степень жесткости среды(т.е. способность среды сопротивляться образованию деформаций) в бегущей волне. Выражается формулой:

P/V=p/c, P- звуковое давление, р- плотность, с- скорость звука, V- объем.

3 - характеристики, не зависящие от свойств приемника:

- интенсивность (сила звука) - энергия, проносимая звуковой волной за единицу времени через единицу площади, установленной перпендикулярно волне звука.

- частота основного тона.

- спектр звука - количество обертонов.

При частотах ниже 17 и выше 20000 Гц колебания давления уже не воспринимаются человеческим ухом. Продольные механические волны с частотой менее 17 Гц получили название инфразвука. Продольные механические волны с частотой, превышающей 20000 Гц, называют ультразвуком.

5. УЗ- механическ. волна с частотой более 20кГц. УЗ представляет собой чередования сгущений и разряжения среды. В каждой среде скорость распростр-я УЗ одинакова. Особенность- узость пучка, что позволяет воздействовать на объекты локально. В неоднородных средах с мелкими включениями частиц имеет место явления дифракции(огибание препятствий). Проникновение УЗ в другую среду характеризуется коэффициентом проникновения( ) =L /L где длины УЗ после и до проникновения в среду.

Действие УЗ на ткани организма механическое, тепловое, химическое. Применение в медицине делится на 2 направления: метод исследования и диагностики, и метод действия. 1)эхоэнцефалография- опред.опухолей и отека мозга; кардиография- измерение сердца в динамике. 2) УЗ физиотерапия- механическое и тепловое воздействие на ткань; при операциях как «УЗ-скальпель»

6. Идеальная жидкость – воображаемая несжимаемая жидкость, лишенная вязкости и теплопроводности. В идеальной жидкости отсутствует внутреннее трение, она непрерывна и не имеет структуры.

Уравнение неразрывности -V1A1 = V2A2 Объемный расход во всякой трубке тока, ограниченной соседними линиями тока, должен быть в любой момент времени одинаков во всех ее поперечных сечениях

Уравнение Бернулли - рv2/2 + рстрgh = const, в случае установившегося течения, полный напор одинаков во всех поперечных сечениях трубки тока. рv2/2 + рст = const – для гориз. участков.

7Стационарный поток- поток, скорость которого в любом месте жидкости никогда не изменяется. 

Ламинарное течение - упорядоченное течение жидкости или газа, при котором жидкость (газ) перемещается как бы слоями, параллельными направлению течения.

Турбулентное течение - форма течения жидкости или газа, при которой их элементы совершают неупорядоченные, неустановившиеся движения по сложным траекториям, что приводит к интенсивному перемешиванию между слоями движущихся жидкости или газа.

Линии – линии, касательные к которым совпадают во всех т. с направлением скорости в этих точках. При стационарном течении линии тока не меняются со временем.

Вязкость - внутреннее трение, свойство текучих тел (жидкостей и газов) оказывать сопротивление перемещению одной их части относительно другой

Уравнение Ньютона: F = (dv/dx)Sη.

Коэффициент вязкости - Коэффициент пропорциональности, зависящий от сорта жидкости или газа. Число, служащее для количественной характеристики свойства вязкости. Коэффициент внутреннего трения.

Неньютоновской жидкостью называют жидкость, при течении которой её вязкость зависит от градиента скорости, течение которых подчиняется уравнению Ньютона. (Полимеры, крахмал, жидкое мыло кровь)

Ньютоновская - Если в движущейся жидкости её вязкость зависит только от её природы и температуры и не зависит от градиента скорости. (Вода и дизельное топливо)

.Рейнольдса число - характеризующее соотношение между инерционными силами и силами вязкости: Re =rdv/m, где r — плотность, m — динамический коэффициент вязкости жидкости или газа, v — скорость потока.При R < Rekр возможно лишь ламинарное течение жидкости, а при Re > Rekр течение может стать турбулентным.

Кинематический коэффициент вязкости - отношение динамической вязкости жидкости или газа к их плотности.

8 –

9. Метод Стокса, В основе  метода Стокса лежит формула для силы сопротивления, возникающей при движении шарика в вязкой жидкости, полученная Стоксом:  Fc = 6 π η V r. Чтобы косвенно измерить  коэффициент вязкости  η следует рассмотреть равномерное движение шарика в вязкой жидкости и применить условие равномерного движения: векторная сумма всех сил, действующая на шарик равна  нулю.

. mg + FA + Fс=0 (всё в векторной форме!!!)

Теперь следует выразить силу тяжести (mg) и силу Архимеда (Fа) через известные величины. Приравнивая величины mg = Fа+Fс   получаем выражение для вязкости:                            

 η = (2/9)*g*(ρт - ρж)* r2 / v  = (2/9) * g *(ρт- ρж)* r2* t / L. Непосредственно измеряются микрометром радиус шарика r (по диаметру), L - путь шарика в жидкости, t- время прохождения пути L. Для измерения вязкости по методу Стокса путь L берется не от поверхности жидкости, а между отметками 1 и 2.  Это вызвано следующим обстоятельством. При выводе рабочей формулы для коэффициента вязкости по методу Стокса использовалось условие равномерного движения. В самом начале движения (начальная скорость шарика равна нулю) сила сопротивления  также равна нулю и шарик имеет некоторое ускорение. По мере набора скорости сила сопротивления увеличивается, равнодействующая трех сил  - уменьшается!  Только после некоторой отметки движение можно считать равномерным  (и то,  - приблизительно).

11. Формула Пуазёйля: При установившемся ламинарном движении вязкой несжимаемой жидкости сквозь цилиндрическую трубу круглого сечения секундный объёмный расход прямо пропорционален перепаду давления на единицу длины трубы и четвертой степени радиуса и обратно пропорционален коэффициенту вязкости жидкости.

Гидравлическое сопротивление

Х = 8ηl / (πR4)

12. Последовательное соединение.

При подаче жидкости по такому составному трубопроводу от точки М к точке N расход жидкости Q во всех последовательно соединенных трубах 12 и 3 будет одинаков, а полная потеря напора между точками М и Nравна сумме потерь напора во всех последовательно соединенных трубах. Таким образом, для последовательного соединения имеем следующие основные уравнения:Q1 = Q2 = Q3 = Q ΣhM-N = Σh1 + Σh2 + Σh3

Параллельное соединение

Обозначим полные напоры в точках М и N соответственно HM и HN , расход в основной магистрали через Q, а в параллельных трубопроводах через Q1, Q2 и Q3; суммарные потери в этих трубопроводах через Σ1 , Σ2 и Σ3.Очевидно, что расход жидкости в основной магистрали

Q = Q1 = Q2 = Q3, Σh1 = HM - HN; Σh2 = HM - HN;Σh3 = HM – HN, Σh1 = Σh2 = Σh3

т.е. потери напора в параллельных трубопроводах равны между собой

15. Закон Гука - связь между величиной упругой деформации и силой, действующей на тело. F= -K X

-1- величина абсолютной деформации пропорциональна величине деформирующей силы с коэффициентом пропорциональности равным жесткости деформируемого образца;  -2- сила упругости, возникающая в деформированном теле, пропорциональна величине деформации с коэффициентом пропорциональности равным жесткости деформируемого образца;  -3- упругое напряжение, возникающее в теле, пропорционально относительной деформации этого тела с коэффициентом пропорциональности равным модулю упругости.

Модуль упругости - коэффициент, характеризующий сопротивление материала к растяж. Сжат.

ОА-упр деф.В предел упругости СД предел текучести.Д предел прочности.

Электричество и магнетизм. Основы мед. электроники

15.Закон Ома для переменного тока

Если ток является синусоидальным с циклической частотой ω, а цепь содержит не только активные, но и реактивные компоненты (ёмкости, индуктивности), то закон Ома обобщается; величины, входящие в него, становятся комплексными:

где:

U = U0eiωt — напряжение или разность потенциалов,

I — сила тока,

Z = Re−iδ — комплексное сопротивление (импеданс),

R = (Ra2 + Rr2)1/2 — полное сопротивление,

Rr = ωL − 1/(ωC) — реактивное сопротивление (разность индуктивного и емкостного),

Rа — активное (омическое) сопротивление, не зависящее от частоты,

δ = − arctg (Rr/Ra) — сдвиг фаз между напряжением и силой тока.

Реактивное сопротивление – это сопротивление катушек индуктивности (дросселей) и конденсаторов. Величина реактивного сопротивления уже зависит от частоты тока. Так на постоянном токе реактивное сопротивление конденсатора устремляется к бесконечности, а дросселя наоборот – к нулю (без учета активной составляющей сопротивления провода).

С изменением частоты тока электрическое сопротивление конденсатора изменяется, по закону:

Xc = 1/2pfC2

где Xc – сопротивление, Ом; f – частота, Гц; С – емкость, Ф.

Электрическое сопротивление конденсатора переменному току можно измерить. Зная сопротивление и частоту тока, легко по формуле вычислить емкость. Кроме того, если в электрической цепи стоит конденсатор происходит сдвиг фаз напряжения и тока. Причем ток опережает напряжение на величину 90°.

Реактивное сопротивление катушки индуктивности с увеличением частоты возрастает:

XL = 2pfL

где XL – сопротивление катушки, Ом; f – частота, Гц; L – индуктивность, Гн.

Индуктивность дросселя легко вычисляется по известному сопротивлению и заданной частоте тока. При этом фазы напряжения и тока на катушке индуктивности сдвигаются относительно друг друга, и теперь ток отстает от напряжения на 90°.

Для измерения реактивного сопротивления емкости и индуктивности потребуется, прежде всего, переменный ток синусоидальной формы. С задачей программного генератора с легкостью может справиться звуковая плата компьютера. Другая проблема – определение величины электрического сопротивления измеряемого элемента. Но оказывается и эту задачу можно решить программным путем, с помощью той же звуковой платы, не прибегая к специальным аналого-цифровым преобразователям

16. полное сопротивление Импеданс - это  полное сопротивление в цепи переменного тока, т.е. его активная и реактивная составляющие. Обозначают импеданс буквой – Z

В общем случае мгновенное значение силы тока i определяется по формуле ,

где j - разность (сдвиг) фаз между колебаниями тока и напряжения, Im – амплитуда силы тока.

  • В проводнике с активным сопротивлением (резисторе) колебания силы тока по фазе совпадают с колебаниями напряжения, а амплитуда силы тока определяется равенством где R – (активное) сопротивление резистора.

  • В катушке индуктивности колебания силы тока отстают от колебаний напряжения на угол j=p/2. Амплитуда силы тока в катушке равна . Величину XL =wL = 2pfL называют индуктивным сопротивлением.

  • На конденсаторе колебания силы тока опережают колебания напряжение на угол j=p/2. Амплитуда силы тока равна: . Величину называют емкостным сопротивлением.

Полное сопротивление цепи равно:

а сдвиг фаз между током и напряжением

Разность X = (XL - XC) называется реактивным сопротивлением цепи. R называется активным сопротивлением цепи.

Для построения зависимости от частоты w вначале строятся зависимости (рис.2,3,4)

Затем графики зависимостей представляем на одном рисунке (рис.5). Указанные кривые пересекаются. Точка пересечения этих графиков означает, что при определенном значении частоты источника переменного тока w емкостное сопротивление конденсатора и индуктивное сопротивления катушки индуктивности равны, т. е. XC=XL или и тогда .

17. Электрический диполь-это совокупность двух равных по величине разноимённых точечных зарядов q, расположенныхна некотором расстоянии l друг от друга, малом по сравнению с расстоянием до рассматриваемой точки поля. Электрическими диполями являются полярные молекулы, например молекула воды, совокупность диполей представляют мембраны клеток.

Для фиксированных угловых координат (то есть на луче, идущем из центра электрического диполя на бесконечность) напряжённость статического[прим 4] электрического поля диполя или в целом нейтральной системы зарядов, имеющей ненулевой дипольный момент,[прим 5] на больших расстояниях r асимптотически приближается к виду r−3, электрический потенциал — к r−2. Таким образом, статическое поле диполя убывает на больших расстояниях быстрее, чем поле простого заряда (но медленнее, чем поле любого более старшего мультиполя).

Напряжённость электрического поля и электрический потенциал неподвижного или медленно движущегося диполя (или в целом нейтральной системы зарядов, имеющей ненулевой дипольный момент) с электрическим дипольным моментом на больших расстояниях в главном приближении выражается как:

в СГСЭ:

в СИ: где — единичный вектор из центра диполя в направлении точки измерения, а точкой обозначено скалярное произведение.

Достаточно просты выражения (в том же приближении, тождественно совпадающие с формулами, приведенными выше) для продольной (вдоль радус-вектора, проведенного от диполя в данную точку) и поперечной компонент напряженности электрического поля: где θ — угол между направлением вектора дипольного момента и радиус-вектором в точку наблюдения (формулы приведены в системе СГС; в СИ аналогичные формулы отличаются только множителем ). Третья компонента напряженности электрического поля — ортогональная плоскости, в которой лежат вектор дипольного момента и радиус-вектор, — всегда равна нулю.

19Токовый монополь- единичный источник электрического потенциала. Вывод формулы потенциала поля токового монополя в бесконечно проводящей среде:

j= - 1/π * dφ( «фи»)/ dr

Где j- плотность электрического поля Р(пи) –удельное сопротивление среды, r- расстояние до униполя.

Токовый диполь- это совокупность двух равных по абсолютной величине разноимённых точечных зарядов, находящихся на некотором расстоянии друг от друга.

21.Диэлектрик (изолятор) — вещество, плохо проводящее электрический ток. Концентрация свободных носителей заряда в диэлектрике не превышает 108 см−3. Основное свойство диэлектрика состоит в способности поляризоваться во внешнем электрическом поле. С точки зрения зонной теории твёрдого тела диэлектрик — вещество с шириной запрещённой зоны больше 3 эВ.

В диэлектриках практически нет свободных электронов поэтому ток по ним не проходит.

Внесём в электрическое поле, которое назовём внешним пластинку диэлектрика, например стекла.

Под влиянием внешнего электрического поля происходит поляризация диэлектрика.

Это значит, что электроны в атомах начинают вращаться по вытянутым орбитам. В результате, на нашем рисунке левая поверхность имеет отрицательный заряд, а правая поверхность имеет положительный заряд. Между этими зарядами внутри диэлектрика возникает своё электрическое поле, которое назовём внутренним. Таким образом, внутри пластинки диэлектрика будут одновременно два поля- внешнее и внутреннее, противоположные по направлению. Напряжённость результирующего электрического поля равна напряжённости большего поля минус напряженность меньшего поля.

Пояснение: Напряжённость внутреннего поля в диэлектриках всегда меньше напряжённости внешнего поля.

Число, показывающее во сколько раз напряжённость электрического поля в диэлектрике меньше чем в вакууме, называется диэлектрической проницаемостью ε (эпсилон).

22. Пьезоэле́ктрики — диэлектрики, в которых наблюдается пьезоэффект, то есть те, которые могут либо под действием деформации индуцировать электрический заряд на своей поверхности (прямой пьезоэффект), либо под влиянием внешнего электрического поля деформироваться (обратный пьезоэффект). Оба эффекта открыты братьями Жаком и Пьером Кюри в 1880—1881 гг.

Наряду с пьезоэлектрическим эффектом существует и обратное ему явление: в пьезоэлектрических кристаллах возникновение поляризации сопровождается механическими деформациями. Поэтому, если на металлические обкладки, укрепленные на кристалле, подать электрическое напряжение, то кристалл под действием поля поляризуется и деформируется.

Легко видеть, что необходимость существования обратного пьезоэффекта следует из закона сохранения энергии и факта существования прямого эффекта. Рассмотрим пьезоэлектрическую пластинку и предположим, что мы сжимаем ее внешними силами F. Если бы пьезоэффекта не было, то работа внешних сил равнялась бы потенциальной энергии упруго деформированной пластинки. При наличии пьезоэффекта на пластинке появляются заряды и возникает электрическое поле, которое заключает в себе дополнительную энергию. По закону сохранения энергии отсюда следует, что при сжатии пьезоэлектрической пластинки совершается большая работа, а значит, в ней возникают дополнительные силы F1, противодействующие сжатию. Это и есть силы обратного пьезоэффекта. Из приведенных рассуждений вытекает связь между знаками обоих эффектов. Если в обоих случаях знаки зарядов на гранях одинаковы, то знаки деформаций различны. Если при сжатии пластинки на гранях появляются заряды, то при создании такой же поляризации внешним полем пластинка будет растягиваться.

23. Электробезопасность медицинской аппаратуры – комплексная система мероприятий, осуществляемых при разработке, промышленном выпуске и эксплуатации медицинской аппаратуры и направленных на обеспечение полной электробезопасности для обслуживающего персонала и пациентов. Необходимость их обусловлена возможностью поражающего действия электрического тока, используемого в физиотерапевтических аппаратах либо для лечебного воздействия, либо для обеспечения их энергией.

Обеспечение электробезопасности включает три основные группы мероприятий: защита от прикосновения к находящимся под напряжением частям, защита от напряжения прикосновения, защита пациента.

Одно из основных требований электробезопасности – исключить возможность случайного прикосновения к находящимся под напряжением частям. Поэтому части, находящиеся под напряжением, не должны становиться доступными после снятия кожухов, крышек, задвижек. Исключение делается для патронов ламп накаливания и предохранителей. В аппаратах обязательно должен быть обеспечен автоматический разряд конденсаторов после отключения аппарата от сети. При наличии в аппарате частей, находящихся под напряжением, превышающим 1000 В переменного или 1500 В постоянного тока, на этих частях или рядом с ними должен быть знак высокого напряжения – красная стрела молнии. При наличии в аппарате высоких напряжений следует использовать блокировки, автоматически отключающие аппарат от сети при снятии его кожуха или крышки. Защите от прикосновения к находящимся под напряжением частям содействует и ограничение диаметра (до 12 мм) отверстий в корпусе аппарата.

От прикосновения должны быть защищены части, находящиеся под напряжением выше 42 В. Для электромедицинской аппаратуры, учитывая особенности ее эксплуатации, все находящиеся под напряжением части должны быть защищены от случайного прикосновения. С точки зрения обеспечения электробезопасности важно, чтобы пои касании какой-либо доступной части аппаратуры через тело человека, имеющее электрический контакт с землей или другой доступной частью, не протекал так называемый ток утечки, превышающий допустимое значение.

Для изделий всех типов при единичном нарушении (обрыв заземляющего провода для изделий классов 0I и 1 , однополюсное выключение сети для изделий класса Н , ток утечки не должен превышать 0,5 мА. Для изделий без защитного заземления, т.е. класса II, в нормальных условиях наибольшая величина тока утечки составляет 0,25 мА для типа Н и 0,1 мА для типов В и BF. Учитывая особую опасность тока утечки изделий типа CF при отсутствии защитного заземления, его величина для изделий класса II в нормальных условиях не должна превышать 0,05 мА.

23«Электробезопасность медицинской аппаратуры»

Современная больница, клиника, любое другое лечебно-профилактическое учреждение располагают большим количеством разнообразных медицинских приборов, аппаратов, вспомогательных устройств, в которых в том или ином виде используется электрическая энергия. Электромедицинская аппаратура, насчитывающая более 5000 наименований, находит применение для диагностики, лечения, обслуживания пациента, при лабораторных исследованиях, сборе и обработке информации, иначе говоря, на всех стадиях лечебного процесса.

Использованию электрической энергии сопутствует опасность поражения электрическим током. Эта опасность для современного человека имеется практически повсюду: и дома, и на работе, и при пользовании средствами транспорта.

Каковы же специфические условия, которые требуют особых мер по защите пациента и медицинского персонала от поражения электрическим током?

Прежде всего, следует учесть, что у больного защитные силы организма подорваны, поэтому случайное воздействие электрическим током может иметь для больного, особенно страдающего заболеванием сердца, более тяжелые последствия, чем для здорового человека.

Пациент во многих случаях не может нормально реагировать на действие электрического тока, чтобы уменьшить возникшую опасность. Он может быть парализован, находиться под наркозом, быть без сознания, наконец, он может быть привязан к операционному столу или кровати.

В повседневной жизни, на производстве - всюду принимаются все меры для того, чтобы отделить человека от возможных источников электрического тока, от любых электрических цепей. В противоположность этому пациента намеренно подвергают действию тока, его включают непосредственно в цепь постоянного низкочастотного или высокочастотного тока.

Кожный покров является естественной защитой человека от действия электрического тока. В медицинском учреждении кожу пациента обрабатывают обезжиривающими, дезинфицирующими и другими растворами. Увлажненная кожа полностью теряет свои достаточно высокие изолирующие свойства. В полости тела вводят различного рода электроды, датчики, осветительные устройства, во время операции кожный покров механически разрушается, обнажаются внутренние органы. Наиболее опасный случай вмешательства в организм человека - введение электродов, катетеров непосредственно в полость или мышцу сердца.

В процесс лечения или обследования к больному нередко подключаются не один, а несколько аппаратов. Так, например, на операционном столе к пациенту могут быть присоединены электроды высокочастотного электрохирургического аппарата, электроды электрокардиографа, наркозный аппарат, электроотсасыватель, датчики температуры, давления, аппарат сердце - легкие и другая аппаратура. Естественно, что, находясь в центре сплетения проводов, электродов, датчиков, пациент подвергается различным опасностям поражения током, предусмотреть которые заранее весьма сложно.

Немало возможностей и косвенного влияния электрической энергии на безопасность пациента. Различного происхождения электрические, магнитные и электромагнитные поля оказывают мешающее действие чувствительной измерительной аппаратуре, осложняя правильное диагностирование. Действие помех на электрокардиостимуляторы, устройства автоматики аппаратов для искусственного дыхания и другую аппаратуру для замещения либо поддержания функций органов организма может иметь катастрофические последствия. Так же чрезвычайно опасно прекращение подачи напряжения питания на замещающую аппаратуру либо на источник освещения при ответственных оперативных вмешательствах.

Используемая в медицинских учреждениях аппаратура находится в очень тяжелых условиях эксплуатации. Многие аппараты постоянно передвигают, переносят из палаты в палату, при этом возможны толчки, удары их. Сетевые шнуры и кабели подвергаются натяжению, закручиваясь вокруг окружающих предметов, они постоянно оказываются под ногами пациентов и персонала. Приходится считаться с возможностью воздействия на аппараты различных жидкостей (крови, мочи, медикаментов).

Тяжелые условия эксплуатации аппаратуры приводят к частым нарушениям ее, выходу из строя.

Разнообразие и сложность обстоятельств, в которых оказывается больной в медицинском учреждении, приводит к тому, что для обеспечения его электробезопасности недостаточно отдельных изолированных мер защиты в аппарате или в электрооборудовании здания. Только комплекс согласованных между собой защитных средств, принятых при создании аппарата, а также при оборудовании медицинского учреждения, может обеспечить необходимый уровень электробезопасности. При этом обязательным условием является достаточная квалификация специально обученного медицинского персонала, а также технических работников, обеспечивающих регулярный контроль и ремонт аппаратуры и электрооборудования здания.

электробезопасность аппаратура порог тока

.24)В зависимости от возможных последствий отказа в процессе эксплуатации медицинские изделия подразделяются на четыре класса:А — изделия, отказ которых представляет непосредственную опасность для жизни пациента или персонала. К изделиям этого класса относятся приборы для наблюдения за жизненно важными функциями больного, аппараты искусственного дыхания и кровообращения и др.;Б — изделия, отказ которых вызывает искажение информации о состоянии организма или окружающей среды, не приводящее к непосредственной опасности для жизни пациента или персонала, либо вызывает необходимость немедленного использования аналогичного по функциональному назначению изделия, находящегося в режиме ожидания. К таким изделиям относятся системы, следящие за больными, аппараты для стимуляции сердечной деятельности и др.;В — изделия, отказ которых снижает эффективность или задерживает лечебно-диагностический процесс в некритических ситуациях, либо повышает нагрузку на медицинский или обслуживающий персонал, либо приводит только к материальному ущербу. К этому классу относится большая часть диагностической и физиотерапевтической аппаратуры, инструментарий и др.;Г — изделия, не содержащие отказоспособных частей. Элек- тромедицинская аппаратура к этому классу не относится.Защитное заземление и зануление, которые имеют одно и тоже назначение - защитить человека от поражения электрическим током, если он прикоснулся к корпусу электроприбора, который из-за нарушения изоляции оказался под напряжением.Защитное заземление - преднамеренное соединение с землей частей электроустановки. Применятся в сетях с изолированной нейтралью, например, в старых домах с сетями 220В. Защитное заземление значительно снижает напряжение, под которое может попасть человек, но это напряжение, может быть не равно нулю. Это объясняется тем, что проводники заземления, сам заземлитель и земля имеют некоторое сопротивление.Зануление — преднамеренное электрическое соединение частей электроустановки, нормально не находящихся под напряжением с глухо заземленной нейтралью трансформатора через нулевой провод сети. Это приводит к тому, что замыкание любой из фаз на корпус электроустановки превращается в короткое замыкание этой фазы с нулевым проводом. Ток в этом случае возникает значительно больший, чем при использовании защитного заземления, и защитная аппаратура сработает эффективнее. Быстрое и полное отключение поврежденного оборудования — основное назначение зануления. Применятся в новых домах.любому человеку, имеющему дело с электричеством, надо помнить следующие положения:— Очень опасно одновременное прикосновение двумя руками к двум оголенным проводам.— Очень опасно прикосновение к оголенному проводу, стоя на земле, на сыром или цементном полу.— Опасно пользоваться неисправными электрическими приборами. Электрические приборы должны периодически осматривать квалифицированные специалисты.— Нельзя собирать, разбирать и исправлять что-либо в электрическом приборе, не отключив его от источника.— Нельзя производить какие-либо операции с электрической аппаратурой, не выключив ее из сети.

25.Медицинская аппаратура должна нормально функциониро вать. Это требование, однако, не всегда выполняется, говоря точнее, такое требование не может выполняться сколь угодно долго если не принимать специальных мер.

Врач, использующий медицинскую аппаратуру, должен иметь представление о вероятности отказа эксплуатируемого изделия, т. е о вероятности порчи прибора (аппарата) или его частей, превышение или понижения допустимых параметров. Устройство, не отвечающее техническим условиям, становится неработоспособным. Отремонтировав, его можно сделать вновь работоспособным. Во многих случаях достаточно заменить лампу или резистор, чтобы изделие вновь функционировало нормально, однако может быть и так, что аппаратура оказывается настолько устаревшей и изношенной, что экономически нецелесообразно ее ремонтировать (восстанавливать). В связи с этим

медицинский персонал должен иметь представление о ремонтопри­годности аппаратуры и долговечности ее частей.

Способность изделия не отказывать в работе в заданных усло­виях эксплуатации и сохранять свою работоспособность в течение заданного интервала времени характеризуют обобщающим тер­мином надежность.

Для медицинской аппаратуры проблема надежности особенно ак­туальна, так как выход приборов и аппаратов из строя может при­вести не только к экономическим потерям, но и к гибели пациентов.

Способность аппаратуры к безотказной работе зависит от мно­гих причин, учесть действие которых практически невозможно, поэтому количественная оценка надежности имеет вероятност­ный характер. Так, например, важным параметром является ве­роятность безотказной работы. Она оценивается эксперимен­тально отношением числа N работающих (не испортившихся) за время t изделий к общему числу N0 испытывавшихся изделий:

Эта характеристика оценивает возможность сохранения изделием работоспособности в заданном интервале времени. Другим количе­ственным показателем надежности является интенсивность от­казов лямбда(t). Этот показатель равен отношению числа отказов dN за время dt к произведению времени dt на общее число N работаю­щих элементов:

Знак «—» поставлен в связи с тем, что dN < 0, так как число рабо­тающих изделий убывает со временем.

Функция лямбда(r) может иметь различный вид. Наиболее характер­ная ее форма изображена графически на рис.

Здесь заметны три области: I — период приработки, когда «выжигаются» дефект­ные элементы изделия, проявляются скрытые пороки, возникшие в процессе изготовления деталей. Интенсивность отказов при этом может быть достаточно велика; II — период нормальной эксплуата­ции, интенсивность отказов значительное время может сохранять постоянное значение. На этот период следует планировать нормальную эксплуатацию аппаратуры; III — пе­риод старения, интенсивность отказов воз­растает со временем благодаря влиянию старения материалов и износа элементов. Медикам должно быть интересно, что приблизительно аналогичный вид имеет временная зависимость параметра, харак­теризующего смертность человека. В боль­шей мере «интенсивность смертности» присуща периоду младенцев (период I) и старикам (период III).

Между вероятностью безотказной работы Р и интенсивностью отказов лямбда существует определенная связь. Установим ее для слу­чаев лямбда = const (период II). Запишем дифференциальное уравнение, разделив переменные по разным частям равенства:

Интегрируя и подставляя нижние пределы (начальное число N0 испытывавшихся изделий и время t = 0) и верхние пределы (число N безотказно работающих изделий к моменту t), получаем:

Сопоставляя 2 уравнения написанных ниже:

, имеем

Таким образом, при постоянной интенсивности отказов получаем экспоненциальный закон изменения со временем вероятности безотказной работы. Этот закон можно использовать для оценки надежности аппаратуры.

В зависимости от возможных последствий отказа в процессе эксплуатации медицинские изделия подразделяются на четыре класса:

А — изделия, отказ которых представляет непосредственную опасность для жизни пациента или персонала. Вероятность безот­казной работы изделий этого класса должна быть не менее 0,99 в течение наработки между планово-предупредительными техниче­скими обслуживаниями, а для изделий, не подлежащих техниче­ским обслуживаниям (ремонт, поверка), — в течение установлен­ного для них срока службы. К изделиям этого класса относятся приборы для наблюдения за жизненно важными функциями боль­ного, аппараты искусственного дыхания и кровообращения и др.;

Б — изделия, отказ которых вызывает искажение информации о состоянии организма или окружающей среды, не приводящее к непосредственной опасности для жизни пациента или персонала, либо вызывает необходимость немедленного использования ана­логичного по функциональному назначению изделия, находяще­гося в режиме ожидания. Вероятность безотказной работы изде­лий этого класса должна быть не менее 0,8. К таким изделиям

относятся системы, следящие за больными, аппараты для стиму­ляции сердечной деятельности и др.;

В — изделия, отказ которых снижает эффективность или за­держивает лечебно-диагностический процесс в некритических си­туациях, либо повышает нагрузку на медицинский или обслужи­вающий персонал, либо приводит только к материальному ущер­бу. К этому классу относится большая часть диагностической и физиотерапевтической аппаратуры, инструментарий и др.;

Г — изделия, не содержащие отказоспособных частей. Элек­тромедицинская аппаратура к этому классу не относится.

Медикам интересно знать, что понятие надежности можно с некоторой долей условности применять и к человеческому орга­низму, рассматривая болезнь как утрату работоспособности, лече­ние — как ремонт, а профилактику — как мероприятия, способ­ствующие повышению надежности. Однако организм — сложная система, и «технический» подход возможен лишь отчасти, с уче­том обратных связей и процессов регулирования.

26. Основные группы медицинских электронных приборов и аппаратов. Особенности сигналов, обрабатываемых медицинской электронной аппаратурой и связанные с ними требования к медицинской электронике.Медицинскую электронную аппаратуру можно разделить на два класса: медицинские приборы и медицинские аппараты.Медицинский прибор -- техническое устройство, предназначенное для диагностических или лечебных измерений (медицинский термометр, электрокардиограф и др.).Медицинский аппарат -- техническое устройство, позволяющее создавать энергетическое воздействие (часто дозированное) терапевтического, хирургического или бактерицидного свойства (аппарат УВЧ терапии, аппарат искусственной почки и др.), а также обеспечить сохранение определенного состава некоторых субстанций.Выделены следующие основные группы приборов и аппаратов, используемые для медико-биологических целей. Устройство для получения (съема), передачи и регистрации медико-биологической информации. С физической точки зрения эти устройства являются генераторами различных электрических сигналов.-Кибернетические электронные устройства. В ряде случаев электронное устройство может совмещать в себе различные группы приборов и аппаратов.

В большинстве приборов электрический сигнал, поступающий от преобразователя, должен пройти обработку, прежде чем он примет форму, удобную для дальнейшего его использования в устройстве отображения. Такая модификация или обработка сигнала выполняется в специальных блоках прибора — блоках обработки сигналов. Электрический сигнал, получаемый от большинства преобразователей, мал, поэтому его следует усилить. Усиление осуществляется с помощью электронных приборов, т. е. приборов, в которых осуществляется управление электронными потоками.

27.Электронный усилитель — усилитель электрических сигналов, в усилительных элементах которого используется явление электрической проводимости в газах, вакууме и полупроводниках. Электронный усилитель может представлять собой как самостоятельное устройство, так и блок (функциональный узел) в составе какой-либо аппаратуры — радиоприёмника, магнитофона, измерительного прибора и т. д.

28. Генераторы гармонических электрических сигналов составляют довольно многочисленную группу устройств, входящих в состав медицинских приборов и аппаратов. Прежде всего, это генераторы стимулирующих сигналов для различных типов электрофизиологической аппаратуры, воздействующей на биологические объекты колебаниями различной формы и интенсивности. Кроме того, генераторы используются для обеспечения работы и создания требуемых режимов функционирования различных электронных схем медицинской аппаратуры. 1.1 Генераторы синусоидальных колебаний Данная группа генераторов предназначена для получения колебаний синусоидальной формы требуемой частоты. Их работа основана на принципе самовозбуждения усилителя ,охваченного положительной обратной связью (рис.1.1). Коэффициент усиления и коэффициент передачи звена обратной связи приняты комплексными, т.е. учитывается их зависимость от частоты. При этом входным сигналом для усилителя в схеме рис.1.1 является часть его выходного напряжения , передаваемого звеном обратной связи  1.1 – Структурная схема генератора Для возбуждения колебаний в системе рис.1.1 необходимо выполнение двух условий. Первое состоит в обеспечении баланса фаз, которое заключается в том, чтобы фазовые сдвиги, создаваемые усилителем ( ) и звеном обратной связи ( ) , в сумме должны быть кратными :  Второе условие , необходимое для возникновения генерации, это условие баланса амплитуд  , которое вытекает из общей формулы для усилителя, охваченного положительной обратной связью: При выполнении баланса амплитуд усилитель компенсирует ослабление сигнала, создаваемое звеном обратной связи, и в схеме возникают устойчивые автоколебания. Для получения синусоидальной формы выходного сигнала используют несколько способов построения схем. Одини из них LC-генераторы На рис.1.2 показана схема LC-генератора c трансформаторной связью, которая представляет собой усилительный каскад, выполненный по схеме с общим эмиттером. В качестве коллекторной нагрузки используется резонансный LC-контур с высокой добротностью. Рисунок 1.2 - Схема генератора с трансформаторнойсвязью

Сигнал обратной связи снимается со вторичной обмотки резонансного контура и через разделительный конденсатор Ср подается на базу транзистора обеспечивая суммарный фазовый сдвиг равный (баланс фаз). Если принять индуктивную связь между первичной (w1) и вторичной (w2) обмотками идеальной, для обеспечения баланса амплитуд необходимо выполнить условие: где  - коэффициент усиления по току транзистора, число витков первичной и вторичной обмоток, соответственно. Частота генерируемых колебаний близка к резонансной частоте колебательного контура:

29 Электронные осциллографы предназначены для визуального наблюдения и измерения параметров периодических электрических сигналов.

Основными частями осциллографа являются электронно-лучевая трубка (ЭЛТ), генератор развертки, блок синхронизации, усилители вертикального и горизонтального каналов отклонения луча.

Электронно-лучевая трубка, схематически изображенная на рис.1, внешне представляет собой колбу специальной формы, в которой создан высокий вакуум. Эта трубка позволяет получить узкий пучок электронов, то есть электронный луч.

В месте попадания на экран электронного луча возникает ярко светящееся пятно, диаметр которого можно сделать весьма малым, превратив его практически в светлую точку. Источником (излучателем) электронов является накаливаемый нагревателем ННкатод К. Для формирования луча из испущенных катодом электронов служат три электрода, имеющие форму коаксиальных цилиндров: управляющий электрод УЭ, первый анод   и второй анод  .Управляющий электрод, имеющий отрицательный относительно катода потенциал, окружает катод и сжимает выходящий из катода электронный пучок. На торце цилиндрического управляющего электрода имеется отверстие, через которое проходят электроны. Изменяя потенциал этого электрода можно регулировать количество электронов в электронном луче, о есть можно регулировать яркость светящегося пятна на экране. Потенциал первого анода положителен относительно катода, а потенциал второго анода положителен относительного первого анода. Регулируя потенциалы анодов, можно добиться фокусировки электронного луча в малое пятно (точку) на экране. На пути электронного луча находятся две пары параллельных пластинчатых электродов Пх и Пу; эти электроды называют отклоняющимися пластинами.

Если к одной из этих пар параллельных пластин приложить напряжение, то между ними образуется электрическое поле, вектор напряженности которого направлен перпендикулярно к пластинам. Под действием этого поля электронный луч, проходящий между пластинами, отклоняется и, следовательно, светящееся пятно перемещается по экрану осциллографа.

Пластины Пх перемещают светящееся пятно в горизонтальном направлении, пластины Пу в вертикальном направлении. Величина смещения этого пятна от центральной точки экрана практически пропорциональна разности потенциалов между соответствующими пластинами.

Важнейшим применением осциллографа является изучение быстрых периодических электрических процессов. Для исследования напряжений, изменяющихся во времени, используют обе пары отклоняющих пластин электронно-лучевой трубки. На вертикально отклоняющие пластины обычно подается излучаемое напряжение, а на горизонтально отклоняющие пластины вырабатываемое в самом осциллографе напряжение, изменяющееся пропорционально времени. Это напряжение, называемое напряжением развертки, вырабатывается генератором развертки. График напряжения развертки изображен на рис. 2. На графике по горизонтальной оси отложено время t, а по вертикальной оси напряжение развертки  . По виду графика это напряжение называют также пилообразным.

На участке графика   напряжение   возрастает пропорционально времени, и поэтому светящееся пятно на экране движется равномерно слева направо вдоль оси Х от точки М на левом крае экрана до точки N на его правом крае (рис. 3).

Дойдя до правого края экрана, пятно быстро (практически мгновенно) возвращается обратно к левому краю экрана (участок   на рис. 2). Затем пятно снова движется равномерно слева направо (участок   графика) и т.д.

Так осуществляется развертка во времени.

Пусть U(t)  изучаемое переменное напряжение. Если в момент  , когда светящееся пятно проходит точку М экрана, на вертикально отклоняющиеся пластины подать напряжение U(t), то электронный луч вычертит кривую зависимости изучаемого напряжения от времени в интервале от   до  , где    момент времени, когда светящееся пятно достигнет точки N экрана. Если U(t)  периодическая функция с периодом Т, равным  , то на экране осциллографа мы увидим первый период функции U(t). После мгновенного возвращения светящегося пятна в точку М мы (при последующем его перемещении в точку N экрана) увидим второй период изменения функции U(t) и т.д. Повторяя развертку многократно, мы сможем увидеть на экране неподвижную картину изменения функции U(t) в течение одного ее периода, если время движения светящегося пятна   по экрану М от N равно переходу Т функции U(t). Если же  , где п  целое число, то на экране мы получим ппериодов изменения функции U(t), и изображение будет неподвижным.

Обычно достаточно точное соотношение периодов развертки и изучаемого напряжения, то есть соотношение  , соблюсти оказывается невозможно из-за нестабильности генератора развертки или самого изучаемого процесса. Для принудительного согласования указанных периодов используют синхронизацию, то есть выбирают такую схему, при которой изучаемое напряжение "навязывает" свой период генератору развертки.

Для измерения амплитуды сигналов необходимо знать чувствительность осциллографа, то есть величину смещения светящегося пятна при изменении напряжения на отклоняющих пластинах на 1 вольт. Для канала вертикального отклонения чувствительность   равна

,

где Y  смещение вдоль оси у под действием напряжения на пластинах Пу, равного  .

При помощи осциллографа можно определить частоту исследуемого сигнала (см. упражнение 2).

Частоту сигнала можно определить и другим способом. Для этого на пластины Пх подают напряжение известной частоты, например, 50 Гц от сети, а на пластины Пу  напряжение неизвестной частоты. Генератор развертки при этом отключается. В данном случае электронный луч участвует в двух взаимно перпендикулярных колебательных движениях. Если точка (например, светящееся пятно на экране осциллографа) одновременно участвует в двух взаимно перпендикулярных гармонических колебаниях (например, вдоль оси Х и оси Y), то она будет двигаться по некоторой траектории. Получающиеся в результате сложения двух взаимно перпендикулярных колебаний траектории называют фигурами Лиссажу; форма этих фигур зависит от соотношения амплитуд частот и фаз колебаний. По форме фигуры Лиссажу можно судить о частоте исследуемого сигнала 

30. Электроды для съёма биоэлектрического сигналов. ЭДС источника биопотенциалов. Эквивалентная схема контура. Группы электродов по их назначению. Проблемы использования электродов в электрофизиологических исследованиях.

Электроды для съема биоэлектрического сигнала-это проводники специальной формы, соединяющие измерительную цепь с биологической системой.При диагностике электроды используют не только для съема электрического сигнала,но и для проведения внешнего электромагнитного воздействия. Например в реографии. В медицине их используют также для оказания электромагнитного воздействия с целью лечения и электростимуляции.

ЭДСбп = Ir+IR+IRвx=IRi +IRвх (Ri=r+R)

Где ЭДСбп- ЭДС источника биопотенциалов

r-сопротивление внутренних тканей биологической системы

R-сопротивление кожи и электродов, контактирующих с ней

Rвх-входное сопротивление услителя биопотенциалов

Эквивалентная схема контура

ЭДСбп, левый прямоугольник-r,правый прямугольник-Rвх

По назначению электроды для съема биоэлектрического сигнала подразделяются на следующие группы:1.для кратковременного применения в кабинетах функциональной диагностики,например для разового снятия электрокардиограммы2.для длительного использования,например,для при постоянном наблюдении за тяжелобольными в условиях палат интенсивной терапии3.для для использования на подвижных обследуемых,например,в спортивной или космической медецине4.для экстренного применения,например,в условиях скорой помощи

При пользовании электродами в электрофизиологтческих исследованиях возникают две специфическиепроблемы.Одна из них-возникновение гальваической ЭДС при контакте электродов с биологической тканью.другая-электролитическая поляризация электродов,что проявляется в выделении на электродах продуктов реакций при прохождении тока.в результате возникает встречная по отношению к основной ЭДС.

31)Датчиком называют устройство, преобразующее измеряемую или контролируемую величину в сигнал, удобный для передачи, дальнейшего преобразования или регистрации. Датчик, к которо¬му подведена измеряемая величина, т. е. первый в измерительной цепи, называется первичным.В рамках медицинской электроники рассматриваются только такие датчики, которые преобразуют измеряемую или контролируемую неэлектрическую величину в электрический сигнал.. Датчики подразделяются на генераторные и параметрические. Генераторные датчики под воздействием измеряемого сигнала непосредственно генерируют напряжение или ток: 1) пьезоэлектрические, пьезоэлектрический эффект; 2) термоэлектрические, термоэлектричество — явление возникновения ЭДС в электрической цепи, состоящей из последовательно соединенных разнородных проводников, имеющих различную температуру спаев; 3) индукционные, электромагнитная индукция; 4) фотоэлектрические, фотоэффект. Параметрические датчики под воздействием измеряемого сигнала изменяют какой-либо свой параметр. Укажем некоторые типы этих датчиков и измеряемый с их помощью параметр: 1) емкостные, емкость; 2) реостатные, омическое сопротивление; 3) индуктивные, индуктивность или взаимная индуктивность.

Чувствительность датчика показывает, в какой мере вы¬ходная величина реагирует на изменение входной:

Она в зависимости от вида датчика выражается, например, в омах на миллиметр (Ом/мм), в милливольтах на кельвин (мВ/К) и т. д.

32. Понятие об аналоговых, дискретных и комбинированных регистрирующих устройствах. Устройства отображения. Медицинское применение регистрирующих и отображающих устройств.

Под устройством отображения понимают устройство, которое временно предоставляет информацию, при появлении новой информации прежняя информация бесследно исчезает. Такими являются в частности стрелочные приборы: амперметр, вольтметр и др. Значительно большее распространение в медицинской электронике получили регистрирующие приборы,которые фиксируют информацию на каком- либо носителе. Отображающие и регистрирующие приборы подразделяют на аналоговые- непрерывные, дискретные и комбинированные,сочетающие возможности аналоговых и дискретных.

Медицинское применения устройств отображения достаточно мало: электротермометр сопротвления, частотомер пульса и др.

Более широко применяются в медицине получили аналоговые регистрирующие устройства. Некоторые из них называют также самопишущими приборами или самописцами. Самопишущие приборы,используемые в медицинской аппаратуре ,преобразуют электрический сигнал в механическое перемещение. Простейщим самописцем является кимограф, работающий от заведенной пружины.

Существуют также светолучвые(шлейфовые) осциллографы,электронно-лучевые трубки и вектор-кардиоскопы.

33. Амплитудная характеристика усилителя выражает зависимость выходного напряжения от входного, представляет собой зависимость установившегося значения выходного напряжения от входного, представляет собой зависимость установившегося значения выходного напряжения от величины подаваемого на вход синусоидального напряжения неизменной частоты, представляет собой зависимость установившегося значения выходного напряжения от величины подаваемого на вход синусоидального напряжения неизменной частоты. НЕЛИНЕЙНЫЕ ИСКАЖЕНИЯ - наличие на выходе испытываемого устройства частотных составляющих, которые отсутствовали в сигнале, поданном на его вход. В результате нелинейных искажений происходит изменение спектра переданного сигнала. Оценивают коэффициентом гармоник.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]