
- •1.1Понятия инновации и потенциала
- •1.2 Понятие инновационного потенциала и его виды
- •1.3 Акустооптический модулятор, инновационные способы изготовления
- •2.1 Развитие и роль инновационного потенциала в России.
- •2.2 Зарубежный опыт построения моделей инновационных систем.
- •2.3 Особенности оценки инновационного потенциала предприятий
- •3.1 Дерево целей
- •3.3 Задача.
1.3 Акустооптический модулятор, инновационные способы изготовления
Акустооптический модулятор — устройство для изменения интенсивности пропускаемого света, вследствие его дифракции на решётке, образуемой в стекле в результате пространственной модуляции показателя преломления акустической волной.
Акустооптические модуляторы основаны на акустооптическом эффекте – изменении показателя преломления вещества под воздействием ультразвуковых волн. Ультразвуковые волны возбуждаются в веществе с помощью пъезокристалла, на который подается сигнал от генератора с малым выходным сопротивлением и большой акустической мощностью.
Благодаря возникновению участков сжатия и растяжения возникающих в стекле и различающихся показателем преломления в среде формируется дифракционная решётка. Световой пучок, дифрагируя на решётке, образует несколько выходных пучков (дифракционных порядков), разнесенных в пространстве под равными углами относительно друг друга.
В зависимости от толщины стеклянного тела АОМ имеет некоторые отличия в работе. В тонком модуляторе принцип работы не отличается от того как это описано ранее, но в толстом — необходимо учитывать условия фазового синхронизма,
(1)
где
—
волновой вектор падающего излучения,
—
волновой вектор звуковой и оптической
,дифрагировшей в первый порядок волны.
В толстом модуляторе при правильном
выборе угла падения входного луча и
благодаря условию синхронизма можно
возбудить в основном первый (или минус
первый) порядок дифракции. Промышленность
выпускает толстые модуляторы, тaк как
они требуют звуковую волну меньшей
мощности. Высокая эффективность дифрации
в толстых модуляторах достигается из-за
более широкой дифракционной решётки.
Характеристики АОМ
Дифракционный угол: длина волны звуковой волны в стекле равна:
(2)
где
—
скорость звука, а
—
частота звука. При частоте модуляции
80 МГц (самая распространенная частота
АОМ) и скорости звука в стекле ~3км/сек,
длина волны звука в стекле составляет
мкм,
а угол отклонения
дифрагированного
луча первого порядка равен около 10
миллирадиан.
Интенсивность дифрагированных лучей зависит от интенсивности звуковой волны. Модулируя интенсивность звуковой волны можно менять (нелинейно) интенсивность дифраированных лучей. Как правило, интенсивность луча нулевого порядка меняется от 15 % до 99 %, а интенсивность первого порядка — (0-80)%. Контрастность модуляции может достигать 1000.
Частота дифрагированных лучей вследствие эффекта Допплера изменяется по формуле
(3)
Такое смещение частоты обусловливается также законом сохранения энергии и импульса (фотонов и фононов). В некоторых АОМ акустические волны, распространяющиеся в противоположных направлениях, создают стоячую волну, в результате частоты дифракционных порядков не меняется.
Фаза дифрагированных лучей также смещается на величину фазы звуковой волны.
Поляризация звуковая волна наводит двулучепреломление в стекле, поэтому поляризация света после прохождения модулятора может меняться. Допустимая частота модуляции для АОМ определяются упругооптическими свойствами акустической среды и может достигать 350 МГц (Эффективность АОМ на такой частоте не велика ~10-20 %).
Быстродействие АОМ ограничивается временем прохождения звуковой волны через сечение светового пучка
(4)
(где d — поперечный размер лазерного луча, v - скорость звука в материале ячейки) и составляет ~(2-10) мксек. АОМ может работать в режиме модулятора и дефлектора (т.е отклонять по углу падающий луч, при изменении частоты звуковой волны).
Рис. 2. – Схема использования АОМ
Схема использования АОМ. Лазерное излучение с помощь линзы фокусируется на АОМ(фокус линзы 20-30см). Чем меньше пятно фокусировки, тем лучше быстродействие АОМ.
Оптически полированное стекло с помощью пайки под давлением (metalpressurebonding) соединяется с пьезопреобразователем, изготовленным из ниобата лития. Толщина пластины ниобата лития выбирается из нужной частоты модуляции (вплоть до 1ГГц).
Новый способ изготовления АОМ: Способ состоит в том, что изготавливают звукопровод в виде прямоугольной призмы, далее наносят вакуумным напылением оптически просветляющие покрытия на грани прямоугольной призмы, далее наносят вакуумным напылением на одну из граней прямоугольной призмы первый адгезионный слой. Затем наносят вакуумным напылением на указанный первый адгезионный слой первый слой золота, далее наносят вакуумным напылением на указанный первый слой золота первый слой индия, кроме того, наносят вакуумным напылением на одну из больших граней каждой из двух пластин из ниобата лития (Y+36°)-среза второй адгезионный слой, далее наносят вакуумным напылением на указанный второй адгезионный слой второй слой золота, далее наносят вакуумным напылением на указанный второй слой золота второй слой индия, далее осуществляют соединение звукопровода с пластинами ниобата лития путем прижатия пластин из ниобата лития с давлением каждой пластины из ниобата лития вторым слоем индия к соответствующему первому слою индия, далее сошлифовывают каждую из пластин из ниобата лития до необходимой толщины, соответствующей рабочему диапазону частот, далее наносят вакуумным напылением на каждую свободную большую грань каждой из пластин из ниобата лития третий адгезионный слой, далее наносят вакуумным напылением на указанный третий адгезионный слой третий слой золота. Способ характеризуется тем, что выбирают в качестве материала звукопровода монокристалл ТеО2, при этом грани прямоугольной призмы ориентируют перпендикулярно кристаллографическим направлениям, нанесение оптически просветляющих покрытий осуществляют на грани прямоугольной призмы, перпендикулярные кристаллографическому направлению, в процессе присоединения пластин из ниобата лития к звукопроводу ориентируют проекции полярных осей пластин из ниобата лития на сами эти пластины из ниобата лития в противоположные друг другу стороны, нанесение первого адгезионного слоя осуществляют на одну из граней прямоугольной призмы, изготовление первого адгезионного слоя, второго адгезионного слоя и третьего адгезионного слоя осуществляют из хрома, выбирают указанное давление из интервала 50-100 кг/см2, по крайней мере в течение части времени, в течение которого осуществляют прижатие пластин из ниобата лития к звукопроводу, на каждую из пластин из ниобата лития подают электрическое напряжение 10-50 В на частоте антирезонанса продольных колебаний соответствующей пластины из ниобата лития в течение 1-3 мин, образованную заготовку в виде звукопровода с просветляющими покрытиями, последовательно расположенными на звукопроводе первым адгезионным слоем, первым слоем золота, первым слоем индия и последовательно расположенными вторым слоем индия, вторым слоем золота, вторым адгезионным слоем одной пластины ниобата лития и самой этой пластины из ниобата лития, а также рядом с ней расположенными последовательно вторым слоем индия, вторым слоем золота, вторым адгезионным слоем другой пластины ниобата лития и самой этой пластины из ниобата лития, а также расположенными на каждой из указанных пластин из ниобата лития третьим адгезионным слоем, третьим слоем золота разрезают на отдельные элементы параллельно плоскостям монокристалла ТеО2. Использование настоящего способа позволяет повысить эффективность устройства при одновременном повышении производительности процесса производства.