
- •Абстрактные классы.
- •Аргументы функций по умолчанию.
- •Арифметические операции с указателями и с указателями на массивы.
- •Ввод-вывод в символьные массивы.
- •Виртуальные классы. Порядок вызова конструкторов и деструкторов.
- •Виртуальные функции.
- •Виртуальные функции-члены.
- •Виртуальный деструктор. Абстрактные классы.
- •Динамическая память. Указатели и массивы. Ссылочный тип.
- •Доступ к глобальным переменным, скрытым локальными переменными с тем же именем (оператор ::).
- •Доступ к членам базовых классов внутри производного класса.
- •Доступ к элементам массива. Вычисление размера массива. Многомерные массивы.
- •Дружественные классы и функции.
- •Закрытые, защищенные и открытые элементы класса.
- •Иерархия классов. Иерархия наследования классов.
- •Инициализация и разрушение (конструкторы и деструкторы).
- •Инициализация массивов по умолчанию. Явная инициализация массивов.
- •Инициализация безразмерных массивов
- •1. Инкапсуляция
- •2. Полиморфизм
- •3. Наследовние
- •22.Использование new и delete на примере динамических массивов, стеков, очередей.
- •Указатель this
- •Указатели на структуру
- •Массивы структур
- •Классы и объекты. Класс как структура.
- •Классы. Спецификаторы доступа public, protected, private.
- •Константные (const) и изменяемые (mutable) члены класса.
- •Конструктор копирования для контейнерного класса.
- •Конструкторы и деструкторы.
- •Конструкторы и способы обращения к ним.
- •Логические операции. Инкремент и декремент. Арифметические операции.
- •Объявление переменной массива
- •Множественное наследование.
- •Модификатор константы. Модификатор volatile. Модификатор const
- •Модификатор volatile
- •Модификатор const
- •Модификатор volatile
- •Объединения: синтаксис и правила.
- •Объединения: создание простого объединения. Использование enum.
- •41. Объекты стандартного предопределенного потокового ввода-вывода cin, cout, cerr, clog.
- •Объявление переменных указателей. Простые операторы с указателями.
- •Оператор if. Оператор if-else. Вложенные операторы if-else. Оператор if-else-if.
- •If (условие_истинно) оператор; else оператор;
- •If (условие_истинно)
- •Операторы динамического распределения памяти (new, delete).
- •Операции динамического распределения памяти.
- •Операции отношения и логические операции. Условная операция. Операции сравнения (Операции отношений)
- •Логические операции.
- •Операция присваивания. Приоритет операций.
- •Определение первичного класса.
- •Определение переменных указателей. Инициализация указателей.
- •Организация списка объектов различного типа. Техническая реализация
- •Параметризованная очередь. Параметризованный стек. Параметризованное бинарное дерево.
- •Int max_len; /* Максимальная длина стека */
- •Int top; /* Индекс элемента в вершине стека */
- •Параметризованный класс двухсвязного списка.
- •58. Перегрузка операций
- •59. Перегрузка для труктур
- •Передача значений параметров по умолчанию. Передача параметров по ссылке и ссылочные переменные.
- •Передача параметра по ссылке
- •Передача структур в функции. Создание массива структур.
- •63. Подставляемые функции (inline-функции).
- •Преобразования указателей на объекты
- •65. Приведите пример использования enum.
- •66. Приведите пример использования inline-функции.
- •67. Приведите пример использования аргументов функций по умолчанию.
- •68. Приведите пример использования арифметических операции с указателями.
- •69. Приведите пример использования виртуальных функций
- •70. Приведите пример использования вызова функций по значению и вызов по ссылке.
- •71. Приведите пример использования дружественных функции.
- •72. Приведите пример использования конструкторов и деструктора.
- •73.Приведите пример использования массива структур.
- •Приведите пример использования перегрузки функций.
- •81. Приведите пример использования указателей и массивов.
- •82. Приведите пример использования условного оператора
- •83.Приведите пример использования циклов for, while, do-while.
- •84. Приведите пример использования шаблонов функций.
- •Принципы организации позднего связывания.
- •Приоритет переменных с файловой и локальной областями действия. Операция уточнения области действия.
- •Производные классы. Доступ к полям и функциям базового класса.
- •88. Простой класс. Вложенные классы
- •Пространство имен. Операторы namespace и using. Пространство имен
- •Прототипы функций. Вызов функций по значению и вызов по ссылке. Область действия. Рекурсия.
- •91.Работа с файлами последовательного и произвольного доступа.
- •92.92.Переменные
- •Где объявляются переменные
- •Локальные переменные
- •Вопрос 95
- •96 Соглашения об именах
- •Тело класса и составные функции.
- •Указатели на массивы. Указатели на строки.
- •Использование указателя на символьную строку
- •Условный оператор. Оператор switch.
- •Формальные и фактические параметры. Массивы в качестве параметров. Аргумент типа void.
- •Способ передачи параметров в подпрограмму
- •110.Циклы for. Циклы while. Циклы do-while. Разница между циклами.
- •Цикл while ("пока") с постусловием
110.Циклы for. Циклы while. Циклы do-while. Разница между циклами.
Рассмотрим пример оператора цикла for:
for ( ; ; ) ;
Его заголовок состоит из пустого оператора (ему соответствует первая точка с запятой) и разделителя, который разделяет два пустых выражения. Тело цикла - пустой оператор.
Пустое выражение, определяющее условие выполнения цикла for интерпретируется как всегда истинное условие. Отсутствие условия выполнения предполагает безусловное выполнение.
. принципы работы этого оператора. Цикл состоит из четырёх этапов.
Прежде всего, выполняется оператор инициализации цикла. Если он не пустой, выражение за выражением, слева направо. Этот этап можно назвать этапом инициализации цикла. Он выполняется один раз, в самом начале работы цикла.
Затем вычисляется значение выражения, которое располагается слева от оператора инициализации. Это выражение называется выражением условия продолжения цикла. Сам этап можно назвать этапом определения условий выполнимости.
Если значение этого выражения отлично от нуля (т.е. истинно), выполняется оператор цикла. Этот этап можно назвать этапом выполнения тела цикла.
После этого вычисляются значения выражений, которые располагаются слева от выражения условия продолжения цикла. Этот этап можно назвать этапом вычисления шага цикла.
На последних двух этапах могут измениться значения ранее определённых переменных. А потому следующий цикл повторяется с этапа определения условий выполнимости.
Цикл while с предусловием позволяет выполнить одну и ту же последовательность действий пока проверяемое условие истинно. При этом условие записывается до тела цикла и проверяется до выполнения тела цикла.
При выполнении цикла while сначала проверяется условие. Если оно ложно, то цикл не выполняется и управление передается на следующую инструкцию после тела цикла while. Если условие истинно, то выполняется инструкция, после чего условие проверяется снова и снова выполняется инструкция. Так продолжается до тех пор, пока условие будет истинно. Как только условие станет ложно, работа цикла завершится и управление передастся следующей инструкции после цикла.
Синтаксис цикла while ("пока") c предусловием такой:
while (условие) { блок инструкций }
Следующий фрагмент программы напечатает на экран квадраты всех целых чисел от 1 до 10: int i=1;
while (i<=10) { cout<<i*i<<endl; ++i; }
В этом примере переменная i внутри цикла изменяется от 1 до 10. Такая переменная, значение которой меняется с каждым новым проходом цикла, называется счетчиком. Заметим, что после выполнения этого фрагмента значение переменной i будет равно 11, поскольку именно при i==11 условие i<=10 впервые перестанет выполняться.
Цикл while ("пока") с постусловием
Цикл "пока" с постусловием отличается от цикла с предусловием тем, что сначала выполняется блок цикла, а потом проверяется условие. Если условие истинно, то цикл будет выполнен еще раз, и так до тех пор, пока условие будет истинно. Синтаксис цикла с постусловием такой (обратите внимание на обязательную точку с запятой после условия):
do
{ Блок инструкций }
while (условие);
Поскольку условие проверяется после выполнения тела цикла, то блок цикла с постусловием всегда будет выполнен хотя бы один раз, независимо от истинности условия. Это может привести к ошибкам, поэтому использовать цикл while с постусловием следует только тогда, когда это действительно упрощает алгоритм.
111. Аналогично шаблонам функций. определяется шаблон семейства классов:
template<список_параметров_шаблона> определение_класса
Шаблон семейства классов определяет способ построения отдельных классов подобно тому, как класс определяет правила построения и формат отдельных объектов. В определении класса, входящего в шаблон, особую роль играет имя класса. Оно является не именем отдельного класса, а параметризованным именем семейства классов. Как и для шаблонов функций, определение шаблона класса может быть только глобальным. Какой бы тип ни имели элементы массива (целый, вещественный, с двойной точностью и т.д.), в этом классе должны быть определены одни и те же базовые операции, например доступ к элементу по индексу и т.д. Если тип элементов вектора задавать как параметр шаблона класса, то система будет формировать вектор нужного типа (и соответствующий класс) при каждом определении конкретного объекта.
Следующий шаблон автоматически формирует классы векторов с указанными свойствами:
// vector.h - шаблон векторов
template<class T> // T - параметр шаблона
class Vector
{public:
Vector(int); // Конструктор класса vector
~Vector() // Деструктор
{ delete [] data; }
// Расширение действия (перегрузка) операции "[]":
T &operator [](int i)
{ return data [i]; }
protected:
T *data; // Начало одномерного массива
int size; // Количество элементов в массиве};
// vector.cpp
// Внешнее определение конструктора класса:
template<class T> Vector <T>::Vector(int n)
{ data = new T[n]; size = n;};
Когда шаблон введен, у программиста появляется возможность определять конкретные объекты конкретных классов, каждый из которых параметрически порожден из шаблона.В программе шаблон семейства классов с общим именем Vector используется для формирования двух классов с массивами целого и символьного типов. В соответствии с требованием синтаксиса имя параметризованного класса, определенное в шаблоне (в примере Vector), используется в программе только с последующим конкретным фактическим параметром (аргументом), заключенным в угловые скобки. Параметром может быть имя стандартного или определенного пользователем типа. В данном примере использованы стандартные типы int и char. Использовать имя Vector без указания фактического параметра шаблона нельзя - никакое умалчиваемое значение при этом не предусматривается.
Реализация компонентной функции шаблона класса, которая находится вне определения шаблона класса, должна включать дополнительно следующие два элемента: Определение должно начинаться с ключевого слова template, за которым следует такой же список_параметров_типов в угловых скобках, какой указан в определении шаблона класса. За именем_класса, предшествующим операции области видимости (::), должен следовать список_имен_параметров шаблона.
template<список_типов>
тип_возвр_значения имя_класса<список_имен_параметров>::имя_функции(список_параметров)
{ ... }
112. шаблон семейства классов: template<список_параметров_шаблона> определение_класса
Шаблон семейства классов определяет способ построения отдельных классов подобно тому, как класс определяет правила построения и формат отдельных объектов. В определении класса, входящего в шаблон, особую роль играет имя класса. Оно является не именем отдельного класса, а параметризованным именем семейства классов. Как и для шаблонов функций, определение шаблона класса может быть только глобальным. Следуя авторам языка и компилятора Си++, рассмотрим векторный класс (в число данных входит одномерный массив). Какой бы тип ни имели элементы массива (целый, вещественный, с двойной точностью и т.д.), в этом классе должны быть определены одни и те же базовые операции, например доступ к элементу по индексу и т.д. Если тип элементов вектора задавать как параметр шаблона класса, то система будет формировать вектор нужного типа (и соответствующий класс) при каждом определении конкретного объекта. Следующий шаблон автоматически формирует классы векторов с указанными свойствами: // vector.h - шаблон векторов
template<class T> // T - параметр шаблона
class Vector{
public:
Vector(int); // Конструктор класса vector
~Vector() // Деструктор {
delete [] data;}
// Расширение действия (перегрузка) операции "[]":
T &operator [](int i) {
return data [i];}
protected:
T *data; // Начало одномерного массива
int size; // Количество элементов в массиве
};
// vector.cpp
// Внешнее определение конструктора класса:
template<class T> Vector <T>::Vector(int n)
{
data = new T[n];
size = n;
};
113. Шаблоны определяются с помощью ключевого слова template и предназначены для определения функций и классов способных работать с различными типами входных и выходных параметров. Шаблоны и наследование связаны следующим образом:
шаблон класса может быть производным от шаблонного класса;
шаблон класса может являться производным от нешаблонного класса;
шаблон класса может быть производным от шаблона класса;
нешаблонный класс может быть производным от шаблона класса.
Шаблонные функции:
Объявление:
template <class T> // или template <typname T>;
T max(T val1, T val2, T val3)
{
T max = val1;
if(val2 > max) max=val2;
if(val3 > max) max=val3;
return max;
}
Использование:
int rez = max(1,10,3);
float rez = max(0.5,9.99,6.78);
Шаблоны и друзья:
friend void f1(); //друг любого класса
friend void f2(x<T> &); //друг конкретного класса
friend void A::f4(); //друг любого класса
friend void C<T>::f5(x<T> &); //друг конкретного класса
friend class Y; //класс Y дружественен любому классу
friend class Z<T>; //класс Y дружественен конкретному классу