
- •Абстрактные классы.
- •Аргументы функций по умолчанию.
- •Арифметические операции с указателями и с указателями на массивы.
- •Ввод-вывод в символьные массивы.
- •Виртуальные классы. Порядок вызова конструкторов и деструкторов.
- •Виртуальные функции.
- •Виртуальные функции-члены.
- •Виртуальный деструктор. Абстрактные классы.
- •Динамическая память. Указатели и массивы. Ссылочный тип.
- •Доступ к глобальным переменным, скрытым локальными переменными с тем же именем (оператор ::).
- •Доступ к членам базовых классов внутри производного класса.
- •Доступ к элементам массива. Вычисление размера массива. Многомерные массивы.
- •Дружественные классы и функции.
- •Закрытые, защищенные и открытые элементы класса.
- •Иерархия классов. Иерархия наследования классов.
- •Инициализация и разрушение (конструкторы и деструкторы).
- •Инициализация массивов по умолчанию. Явная инициализация массивов.
- •Инициализация безразмерных массивов
- •1. Инкапсуляция
- •2. Полиморфизм
- •3. Наследовние
- •22.Использование new и delete на примере динамических массивов, стеков, очередей.
- •Указатель this
- •Указатели на структуру
- •Массивы структур
- •Классы и объекты. Класс как структура.
- •Классы. Спецификаторы доступа public, protected, private.
- •Константные (const) и изменяемые (mutable) члены класса.
- •Конструктор копирования для контейнерного класса.
- •Конструкторы и деструкторы.
- •Конструкторы и способы обращения к ним.
- •Логические операции. Инкремент и декремент. Арифметические операции.
- •Объявление переменной массива
- •Множественное наследование.
- •Модификатор константы. Модификатор volatile. Модификатор const
- •Модификатор volatile
- •Модификатор const
- •Модификатор volatile
- •Объединения: синтаксис и правила.
- •Объединения: создание простого объединения. Использование enum.
- •41. Объекты стандартного предопределенного потокового ввода-вывода cin, cout, cerr, clog.
- •Объявление переменных указателей. Простые операторы с указателями.
- •Оператор if. Оператор if-else. Вложенные операторы if-else. Оператор if-else-if.
- •If (условие_истинно) оператор; else оператор;
- •If (условие_истинно)
- •Операторы динамического распределения памяти (new, delete).
- •Операции динамического распределения памяти.
- •Операции отношения и логические операции. Условная операция. Операции сравнения (Операции отношений)
- •Логические операции.
- •Операция присваивания. Приоритет операций.
- •Определение первичного класса.
- •Определение переменных указателей. Инициализация указателей.
- •Организация списка объектов различного типа. Техническая реализация
- •Параметризованная очередь. Параметризованный стек. Параметризованное бинарное дерево.
- •Int max_len; /* Максимальная длина стека */
- •Int top; /* Индекс элемента в вершине стека */
- •Параметризованный класс двухсвязного списка.
- •58. Перегрузка операций
- •59. Перегрузка для труктур
- •Передача значений параметров по умолчанию. Передача параметров по ссылке и ссылочные переменные.
- •Передача параметра по ссылке
- •Передача структур в функции. Создание массива структур.
- •63. Подставляемые функции (inline-функции).
- •Преобразования указателей на объекты
- •65. Приведите пример использования enum.
- •66. Приведите пример использования inline-функции.
- •67. Приведите пример использования аргументов функций по умолчанию.
- •68. Приведите пример использования арифметических операции с указателями.
- •69. Приведите пример использования виртуальных функций
- •70. Приведите пример использования вызова функций по значению и вызов по ссылке.
- •71. Приведите пример использования дружественных функции.
- •72. Приведите пример использования конструкторов и деструктора.
- •73.Приведите пример использования массива структур.
- •Приведите пример использования перегрузки функций.
- •81. Приведите пример использования указателей и массивов.
- •82. Приведите пример использования условного оператора
- •83.Приведите пример использования циклов for, while, do-while.
- •84. Приведите пример использования шаблонов функций.
- •Принципы организации позднего связывания.
- •Приоритет переменных с файловой и локальной областями действия. Операция уточнения области действия.
- •Производные классы. Доступ к полям и функциям базового класса.
- •88. Простой класс. Вложенные классы
- •Пространство имен. Операторы namespace и using. Пространство имен
- •Прототипы функций. Вызов функций по значению и вызов по ссылке. Область действия. Рекурсия.
- •91.Работа с файлами последовательного и произвольного доступа.
- •92.92.Переменные
- •Где объявляются переменные
- •Локальные переменные
- •Вопрос 95
- •96 Соглашения об именах
- •Тело класса и составные функции.
- •Указатели на массивы. Указатели на строки.
- •Использование указателя на символьную строку
- •Условный оператор. Оператор switch.
- •Формальные и фактические параметры. Массивы в качестве параметров. Аргумент типа void.
- •Способ передачи параметров в подпрограмму
- •110.Циклы for. Циклы while. Циклы do-while. Разница между циклами.
- •Цикл while ("пока") с постусловием
Виртуальные функции.
Виртуальный метод (виртуальная функция) — в объектно-ориентированном программировании метод (функция) класса, который может быть переопределён в классах-наследниках так, что конкретная реализация метода для вызова будет определяться во время исполнения. Таким образом, программисту необязательно знать точный тип объекта для работы с ним через виртуальные методы: достаточно лишь знать, что объект принадлежит классу или наследнику класса, в котором метод объявлен.
Виртуальные методы — один из важнейших приёмов реализации полиморфизма. Они позволяют создавать общий код, который может работать как с объектами базового класса, так и с объектами любого его класса-наследника. При этом базовый класс определяет способ работы с объектами и любые его наследники могут предоставлять конкретную реализацию этого способа.
Базовый класс может и не предоставлять реализации виртуального метода, а только декларировать его существование. Такие методы без реализации называются «чисто виртуальными» (калька с англ. pure virtual) или абстрактными. Класс, содержащий хотя бы один такой метод, тоже будет абстрактным. Объект такого класса создать нельзя (в некоторых языках допускается, но вызов абстрактного метода приведёт к ошибке). Наследники абстрактного класса должны предоставить реализацию для всех его абстрактных методов, иначе они, в свою очередь, будут абстрактными классами.
Для каждого класса, имеющего хотя бы один виртуальный метод, создаётся таблица виртуальных методов. Каждый объект хранит указатель на таблицу своего класса. Для вызова виртуального метода используется такой механизм: из объекта берётся указатель на соответствующую таблицу виртуальных методов, а из неё, по фиксированному смещению, — указатель на реализацию метода, используемого для данного класса. При использовании множественного наследования или интерфейсов ситуация несколько усложняется за счёт того, что таблица виртуальных методов становится нелинейной.
Виртуальные функции-члены.
Очередная модификация базового класса приводит к неожиданным последствиям. Эта модификация состоит в изменении спецификатора функции-члена базового класса. Мы (впервые!) используем спецификатор virtual в объявлении функции. Функции, объявленные со спецификатором virtual, называются виртуальными функциями. Введение виртуальных функций в объявление базового класса (всего лишь один спецификатор) имеет столь значительные последствия для методологии объектно-ориентированного программирования, что мы лишний раз приведём модифицированное объявление класса A:
class A { public: virtual int Fun1(int); };
Один дополнительный спецификатор в объявлении функции и больше никаких (пока никаких) изменений в объявлениях производных классов. Как всегда, очень простая функция main(). В ней мы определяем указатель на объект базового класса, настраиваем его на объект производного типа, после чего по указателю мы вызываем функцию Fun1():
void main () { A *pObj; A MyA; AB MyAB; pObj = &MyA; pObj->Fun1(1); AC MyAC; pObj = &MyAC; pObj->Fun1(1); }
Если бы не спецификатор virtual, результат выполнения выражения вызова
pObj->Fun1(1);
был бы очевиден: как известно, выбор функции определяется типом указателя.
Однако спецификатор virtual меняет всё дело. Теперь выбор функции определяется типом объекта, на который настраивается указатель базового класса. Если в производном классе объявляется нестатическая функция, у которой имя, тип возвращаемого значения и список параметров совпадают с аналогичными характеристиками виртуальной функции базового класса, то в результате выполнения выражения вызова вызывается функция-член производного класса.
Сразу надо заметить, что возможность вызова функции-члена производного класса по указателю на базовый класс не означает, что появилась возможность наблюдения за объектом "сверху вниз" из указателя на объект базового класса. Невиртуальные функции-члены и данные по-прежнему недоступны. И в этом можно очень легко убедиться. Для этого достаточно попробовать сделать то, что мы уже однажды проделали - вызвать неизвестную в базовом классе функцию-член производного класса:
//pObj->Fun2(2); //pObj->AC::Fun1(2);
Результат отрицательный. Указатель, как и раньше, настроен лишь на базовый фрагмент объекта производного класса. И всё же вызов функций производного класса возможен. Когда-то, в разделах, посвящённых описанию конструкторов, нами был рассмотрен перечень регламентных действий, которые выполняются конструктором в ходе преобразования выделенного фрагмента памяти в объект класса. Среди этих мероприятий упоминалась инициализация таблиц виртуальных функций.
Наличие этих самых таблиц виртуальных функций можно попытаться обнаружить с помощью операции sizeof. Конечно, здесь всё зависит от конкретной реализации, но, по крайней мере, в версии Borland C++ объект-представитель класса, содержащего объявления виртуальных функций, занимает больше памяти, нежели объект аналогичного класса, в котором те же самые функции объявлены без спецификатора virtual.
cout << "Размеры объекта: " << sizeof(MyAC) << "…" << endl;
Так что объект производного класса приобретает дополнительный элемент - указатель на таблицу виртуальных функций. Схему такого объекта можно представить следующим образом (указатель на таблицу мы обозначим идентификатором vptr, таблицу виртуальных функций - идентификатором vtbl):
MyAC::=vptr A AC vtbl::=&AC::Fun1
На нашей новой схеме объекта указатель на таблицу (массив из одного элемента) виртуальных функций не случайно отделён от фрагмента объекта, представляющего базовый класс лишь пунктирной линией. Он находится в поле зрения этого фрагмента объекта. Благодаря доступности этого указателя оператор вызова виртуальной функции Fun1
pObj->Fun1(1);
можно представить следующим образом:
(*(pObj->vptr[0])) (pObj,1);