- •1. Пусть а1в2с2 – треугольник, равный треугольнику авс, с вершиной в2 на луче а1в1 и вершиной с2 в той же полуплоскости относительно прямой а1в1, где лежит вершина с1.
- •5. Треугольник а1в1с1 совпадает с треугольником а1в2с2, а значит, равен треугольнику авс.
- •1. Совместим вершину а1 а1в1с1 с вершиной а авс.
- •1. Перечислить основные фигуры. Как они изображаются и обозначаются? Аксиома принадлежности точек и аксиома прямой. Сформулировать, сделать чертеж и символическую запись.
- •2. Определение серединного перпендикуляра. Доказать свойство серединного перпендикуляра.
- •2. Определение угла; биссектрисы угла. Доказать теорему о свойстве биссектрисы угла.
- •1. Определение отрезка, его обозначение. Аксиома расположения точек на прямой (чертеж, символическая запись). Что называется длиной отрезка, его серединой?
- •2. Из трех различных точек прямой одна и только одна лежит между двумя другими.
- •Каждый отрезок имеет положительную длину. Длина отрезка равна сумме длин двух частей, не которые он разбивается любой его точкой.
- •2. Каково бы ни было положительное число, существует отрезок, длина которого равна этому числу.
- •Определение перпендикулярных прямых. Доказать теорему о прямой, перпендикулярной данной и проходящей через точку этой прямой.
- •1) От луча ов в заданную полуплоскость можно отложить согласно аксиоме откладывания углов.
- •2) Докажем, что ор – единственная прямая, перпендикулярная ав.
- •1. Какие отрезки называются равными? Аксиома измерения отрезков (формулировка, чертеж, символическая запись).
- •Каждый отрезок имеет положительную длину. Длина отрезка равна сумме длин двух частей, не которые он разбивается любой его точкой.
- •2. Каково бы ни было положительное число, существует отрезок, длина которого равна этому числу.
- •2. Определение равнобедренного, равностороннего треугольника. Доказать свойство углов равнобедренного, равностороннего треугольников.
- •1. Дополнительное построение. Проведем отрезок bd – биссектрису авс.
- •1. Определение полуплоскости. Аксиома разбиения плоскости и свойства разбиения (сформулировать, сделать чертеж и символическую запись).
- •2. Определение медианы. Доказать свойство медианы равнобедренного треугольника, проведенной к его основанию. Сформулировать обратные теоремы.
- •1. Определение, изображение, обозначение луча (полупрямой). Какие полупрямые называются дополнительными? Аксиома откладывания отрезков (формулировка, чертеж, символическая запись).
- •2. Определение хорды, диаметра круга. Доказать теорему о диаметре, перпендикулярном хорде. Сформулировать обратную теорему.
- •1. Определение и обозначение угла. Виды углов и их определение (сделать чертежи). Доказать свойство биссектрис вертикальных углов.
- •1) А, где а – точка, являющаяся вершиной угла;
- •2) Вас, где а – точка, являющаяся вершиной угла, в и с – точки, взятые на разных сторонах угла (ав и ас – лучи, образующие угол);
- •3) (Ab), где a, b – лучи, образующие угол.
- •5. Oa и od – дополнительные полупрямые ok и on – дополнительные полупрямые n ko.
- •2. Определение вневписанной окружности. Доказать теорему о центре вневписанной окружности.
- •2. Точка о пересечения внешних биссектрис равноудалена от прямых, содержащих стороны ab и bc. Поэтому через нее проходит биссектриса внутреннего угла a.
- •1. По свойству касательных осq, obp. Проведем луч из точки а через центр окружности. 2. Рассмотрим образовавшиеся треугольники аос и аов.
- •1. Определение равных углов, биссектрисы угла. Аксиома откладывания углов (формулировка, чертеж, символическая запись).
- •1. Пусть серединные перпендикуляры kk1 и nn1 пересекаются в точке о. Соединим точку о с вершинами треугольника авс.
- •2. Определение окружности, вписанной в треугольник. Доказать теорему о центре вписанной окружности. В данный треугольник вписать окружность.
- •1. Пусть биссектрисы аа1 и вв1 пересекаются в точке о. Построим из точки о перпендикуляры ok, on и op к сторонам ав, вс и ас треугольника.
- •2. Алгоритм решения задач на построение. Построить треугольник по трем сторонам. Построить биссектрису угла.
- •4. Рассмотрим полученные углы.
- •2. Что значит решить задачу на построение? Построить угол, равный данному. Построить середину отрезка.
- •1 . Если прямая пересекает одну из двух параллельных прямых, то она пересекает и другую.
- •2. Если две прямые параллельны третьей прямой, то они параллельны между собой.
- •1. Определение высоты, медианы, биссектрисы треугольника. Замечательные точки треугольника (сделать чертеж и дать им определение).
- •2. Определение смежных и вертикальных углов. Доказать свойства и следствия.
- •1) Аос и вос – смежные;
- •2) Аоd и аос – смежные;
- •1. Определение равных треугольников. Сформулировать признаки равенства треугольников. Доказать второй признак.
- •1. Дополнительное построение. Проведем отрезок bd – биссектрису авс.
- •2. Доказать теорему о свойствах углов, образованных при пересечении двух параллельных прямых секущей.
- •2. Определение внешнего угла треугольника. Доказать свойства внешнего угла треугольника.
- •1. Определение окружности и ее элементов (центр, радиус, хорда, диаметр, дуга). Формула длины окружности; длины дуги. Определение центрального угла, его градусная мера.
- •2. Доказать свойство катета, лежащего против угла в 30°.
- •1. Определение круга, сектора. Формула площади круга и сектора. Сегменты.
- •2. Теорема о соотношении между сторонами и углами треугольника (прямая и обратная).
- •1. Взаимное расположение окружности и прямой (рассмотреть все случаи, сделать чертежи и символическую запись).
- •1. Взаимное расположение двух окружностей (рассмотреть все случаи, сделать чертежи); расстояние между центрами окружностей.
- •1. Окружности не имеют общих точек. Проведем отрезок, соединяющий центры окружностей (о1о2) – линию центров.
- •3. Окружности имеют одну общую точку (окружности касаются).
- •2. Доказать неравенство треугольника.
- •1. Дополнительное построение:
- •2. Рассмотрим вcd:
- •1. Определение параллельных прямых. Сформулировать и доказать признаки параллельности прямых.
- •2. Доказать теоремы о величине угла между хордами и секущими.
- •1) Окружность – это геометрическое место точек, равноудаленных от данной точки.
- •2) Биссектриса угла – это геометрическое место точек, равноудаленных от сторон угла.
- •3) Серединный перпендикуляр к отрезку – это геометрическое место точек, равноудаленных от концов отрезка.
- •2. Рассмотрим треугольники aов и eod.
- •1. Определение биссектрисы угла, определение смежных углов. Доказать теорему о биссектрисах смежных углов.
- •2. Доказать теорему о сумме внутренних углов выпуклого многоугольника.
- •2. Доказать теоремы об углах с соответственно параллельными сторонами и соответственно перпендикулярными сторонами.
- •1. Какой четырехугольник называется описанным около окружности? Доказать теорему о свойстве сторон описанного четырехугольника.
- •1) Точка c находится вне окружности,
- •2) Она лежит внутри окружности. При первом предположении и усло-
- •2. Доказать теорему о биссектрисах вертикальных углов.
- •5. Oa и od – дополнительные полупрямые ok и on – дополнительные полупрямые n ko.
- •1. Какой четырехугольник называется вписанным в окружность? Доказать теорему о свойстве углов вписанного четырехугольника.
- •1) Cd не пересекает окружность,
- •2) Cd пересекает окружность.
- •2. Что называется расстоянием между параллельными прямыми? Доказать, что расстояния от любых двух точек прямой до параллельной ей прямой равны.
5. Oa и od – дополнительные полупрямые ok и on – дополнительные полупрямые n ko.
2. Определение вневписанной окружности. Доказать теорему о центре вневписанной окружности.
Рассмотрим треугольник АВС и продолжим две его стороны АВ и АС. Проведем биссектрису угла А. Тогда всякая ее точка равноудалена от лучей АС и АВ. Проведем также биссектрису угла, смежного с углом В треугольника АВС. Точка пересечения этой биссектрисы и биссектрисы угла А равноудалена от стороны ВС и продолжения сторон АВ и АС, а значит, лежит на биссектрисе угла, смежного с углом С треугольника АВС.
Определение 1. Окружность, касающаяся одной стороны треугольника и продолжения двух его других сторон, называется вневписанной окружностью.
Теорема о существовании вневписанной окружности: биссектрисы двух внешних углов треугольника и биссектриса внутреннего угла, не смежного с этими двумя внешними, пересекаются в одной точке, которая является центром окружности, касающейся одной стороны треугольника и продолжений двух других сторон.
Д
оказательство:
1. В любом треугольнике ABC две биссектрисы внешних углов (внешние биссектрисы) всегда пересекаются. В самом деле, сумма трех внешних углов равна 360, поэтому сумма двух из них меньше 360 и, значит, сумма половин двух внешних углов меньше 180. Тогда две внешние биссектрисы пересекаются (в той полуплоскости от стороны треугольника, которая этот треугольник не содержит), так как если бы они оказались параллельными, то сумма внутренних односторонних углов была бы равна 180.
2. Точка о пересечения внешних биссектрис равноудалена от прямых, содержащих стороны ab и bc. Поэтому через нее проходит биссектриса внутреннего угла a.
Окружность с центром О и радиусом r, равным расстоянию от точки О до стороны касания треугольника ABC, касается стороны BC в ее внутренней точке N и продолжений сторон AC и AB в точках K и P. Она называется вневписанной окружностью треугольника.
Всего существует три вневписанные окружности треугольника, соответствующие трем его сторонам.
Билет № 9.
1. Единицы измерения углов (градусы, минуты, секунды и перевод одних единиц в другие). Как измерять углы с помощью транспортира? Аксиома измерения углов (формулировка, чертеж, символическая запись).
Измерение
углов основано на сравнении их с
углом, принятым за единицу измерения.
Обычно за единицу измерения углов
принимают градус
– угол, равный
части развернутого угла.
часть градуса называется минутой,
а
часть минуты называется секундой.
Определение 1. Положительное число, которое показывает, сколько раз градус и его части укладываются в данном угле, называется градусной мерой угла.
Если два угла равны, то градус и его части укладываются в этих углах одинаковое число раз, т. е. равные углы имеют равные градусные меры.
Если же один угол меньше другого, то в нем градус или его часть укладываются меньшее число раз, чем в другом угле, т. е. меньший угол имеет меньшую градусную меру.
Для измерения углов используется транспортир.
Аксиома измерения углов:
Каждый угол имеет положительную градусную меру. Градусная мера угла равна сумме градусных мер двух углов, на которые он делится некоторым лучом, лежащим внутри угла.
2. Каково бы ни было положительное число, не превышающее 360, существует угол, градусная мера которого равна этому числу.
Градус – это одна тристашестидесятая часть окружности. Градусная мера развернутого угла равна 180°, полного угла – 360°.
AOB = AOC + BOC.
2. Определение окружности, радиуса окружности, касательной к окружности. Доказать теорему об отрезках касательных, проведенных из одной точки к окружности.
Определение 1. Окружностью называется геометрическая фигура, состоящая из всех точек, расположенных на заданном расстоянии от данной точки. Данная точка называется центром окружности, а отрезок, соединяющий центр с какой-либо точкой окружности, - радиусом окружности. Из определения окружности следует, что все радиусы имеют одну и ту же длину.
Определение 2. Прямая, имеющая с окружностью только одну общую точку, называется касательной к окружности.
Теорема 1 (об отрезках касательных, проведенных к окружности из одной точки). Отрезки касательных к окружности, проведенные из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности.
Д
ано:
О – окружность; p
и q
– касательные;
p∩q ={A}; n – луч; O n.
Доказать: AB = AC; OAB = OAC.
Доказательство:
