Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Lektsia_6_Osobennosti_vizualnogo_vospriatia_v.doc
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
1.92 Mб
Скачать

Особенности визуального восприятия в архитектурных сооружениях.

План лекции:

  1. Распознавание зрительных конфигураций;

  2. Закон экономии. Единство форм органического мира. Закономерности предметного мира.

  3. Восприятие мира человеком. Эмоции. Зрительное восприятие, его роль в композиции.

  4. Теория геонов;

  5. Зрительно воспринимаемые носители информационно-эстетического

потенциала здания.

1. Распознавание зрительных конфигураций.

Важнейшая функциия восприятия - распознавание зрительных конфигураций, ведущае, в частности, к узнаванию предметов и их категоризации, то есть отнесению к той или иной семантической категории. Проблема механизмов распознавания, или «распознавания образов», является одной из центральных для целого комплекса когнитивных наук: психологии, нейрофизиологии, искусственного интеллекта и нейроинформатики. В дальнейшем мы будем возвращаться к ее рассмотрению из перспективы организации семантической информации. Данная тема посвящена сенсорно-перцептивным механизмам распознавания.

Элементарной предпосылкой того, что некоторый объект вообще будет опознан, является его выделение в качестве фигуры из окружающего фона. Кроме того, при распознавании акцент лежит на индивидуальных признаках, таких как цвет поверхности и форма. Пространственно-ситуативные признаки (положение в пространстве, ориентация, движение, освещенность) выполняют при распознавании скорее технические функции — чаще всего их параметры лишь учитываются нами для того, чтобы дать инвариантную (константную) оценку индивидуальным признакам. Таким образом, можно сказать, что распознавание связано с относительно поздними стадиями восприятия, как бы «надстраивающимися» над процессами динамической пространственной локализации.

Инерционность восприятия увеличивается при утомлении, когда ослаблены центральные процессы контроля. Это проявляется в увеличении продолжительности последовательных образов, усилении маскировки и снижении критической частоты слияния мелькании.

Были проведены систематические исследования законов перцептивной организации, направленные на выяснение природы влияющих на выделение фигуры из фона факторов и их взаимоотношений. При этом оказалось, что динамическая локализация в пространстве служит наиболее фундаментальной основой для такого выделения. Если разные законы перцептивной организации конфликтуют между собой, «навязывая» разные варианты группировки видимых компонентов сцены, то победителем обычно оказывается фактор близости, причем близости в трехмерном пространстве, а не на сетчатке. Закономерное движение стимулов в трехмерном пространстве также оказывается сильнейшим фактором перцептивной организации. Если пространственно-динамические факторы нейтральны (например, когда в статичной конфигурации расстояния между элементами равны между собой), то второй по силе группой факторов оказывается глобальное сходство, определяемое такими признаками, как окраска, общая ориентация (для элементов, имеющих выраженную ориентацию) или размеры (зернистость). Только тогда, когда все эти факторы нейтрализованы, группировка начинает учитывать особенности и сходство собственно формы элементов.

Рис. 1

Различение текстур (А) может быть противоположным по профилю простоты и сложности различению формы (Б) образующих эти текстуры элементов.

Очевидное объяснение этих зависимостей состоит в том, что восприятие формы предполагает анализ уже выделенных из фона объектов, тогда как группировка основана на глобальной оценке сходства без предварительного восприятия формы образующих текстуру элементов. Эти два процесса не просто различны, но часто противоположны по чувствительности к отдельным признакам объектов. Так, хотя буквы «L» и «Т» явно отличаются по форме, образованные из них текстуры лишь с трудом отличаются друг от друга. Напротив, небольшие вариации в наклоне «Т» практически не замечаются нами при узнавании, однако они служат хорошей основой для дифференциации соответствующих текстур.

Рис. 2

Особенно важную роль в распознавании играют именно процессы спецификации и распознавания формы. Гештальтпсихологи считали восприятие формы первичным фактом восприятия, подчеркивая его «вещный», или предметный, характер. Если тезис о первичности восприятия формы вызывает сегодня — на основании представленных выше данных о микрогенезе — обоснованные сомнения, то предметность действительно представляется весьма важной характеристикой этого класса перцептивных процессов.

В психологических подходах центральное место занимают формальные теории описания структуры перцептивных конфигураций. Речь идет о синтаксическом подходе: сначала выделяются отдельные элементы (признаки), из которых по определенным правилам (грамматикам) строится перцептивное описание конфигурации. Фактически в основу этого подхода положена более ранняя идея Дональда М. Маккая (МасКау, 1950), согласно которой перцептивная сложность (информативность) конфигурации определяется числом операций, осуществляемых перцептивной системой для ее спецификации. Но характер этих элементов и операций над ними по-прежнему остается не вполне ясен. Одна из наиболее интересных теорий такого рода развивается голландским психологом Э. Левенбергом. Модель постулирует повторения, зеркальные отображения и другие избыточные операции с разными элементами конфигураций, иногда осуществляемые в итеративном (повторном) режиме, то есть в ходе нескольких последовательных обращений к продуктам процесса кодирования.

Оценка сложности различных перцептивных интерпретаций используется для объяснения множества эффектов. Так, можно задать вопрос, почему на рис. 3.1 ЗА мы всегда видим два пересекающихся квадрата, хотя теоретически возможны и альтернативные варианты, частично указанные в нижнем ряду. Ответ связан с относительной простотой процесса конструирования квадрата, для которого нужно повторное использование лишь двух элементов — отрезка фиксированной

Джулиан Хохберг следующим образом характеризует эти исследования: «На физиологическом и психофизическом уровнях идет лихорадочный поиск элементов сенсорного анализа (которые учитель Гельмгольца Иоханнес Мюллер назвал "специфическими энергиями органов чувств") и есть упоминания ментальных структур, к которым эти элементы должны относиться... Но если Титченер когда-то заявил, что небольшой (по сегодняшним масштабам) финансовой поддержки и пары лет работы было бы достаточно, чтобы поставить все точки над / и черточки на tего варианта ассоцианистской теории, ...мне что-то не приходилось слышать таких оптимистичных заявлений в последнее время».

Рис. 3 Потенциальные интерпретации

Рис. А

Прозрачность

Низкая высокая

Б В

Рис. 5

Примеры влияния фигуративной сложности на восприятие: А. Однозначность восприятия потенциально многозначной конфигурации; Б. Эффект глубины в плоском изображении; В. Феноменальная прозрачность длины и угла 90°. При других интерпретациях число элементов и разнообразие операций с ними возрастает. Точно так же на рис. 1 ЗБ нами воспринимается, казалось бы, очень сложная трехмерная конструкция, а не плоский, нанесенный на поверхность узор. В действительности, с учетом высокой избыточности компонентов (они показаны справа), трехмерная интерпретация оказывается более простой, чем двумерная, требующая спецификации множества отличающихся по ряду параметров элементов. Наконец, на рис. 3 слева мы видим плоский двумерный паттерн, тогда как справа похожая с точки зрения физических признаков конфигурация распадается на две, причем та из них, которая лежит «сверху», к тому же оказывается феноменально прозрачной, позволяющей видеть детали, лежащие «внизу». Мы предоставляем читателю возможность объяснить этот феномен по аналогии с объяснениями, данными выше.

Если нейроны выделяют соединения контуров, то почему разные соединения, например типов «Y», «X», «L» или «Т», выделяются с различной частотой. Математическое моделирование описаний трехмерных сцен показало, что такие соединения могут выполнять разные функции, связанные с отнесением участков, ограниченных контурами, к одним и тем же или к разным предметам Так, особенно часто выделяемое соединение типа «Y» с высокой степенью вероятности представляет собой вершину (впадину) единого объекта с тремя гранями. Напротив, соединение «Т» скорее свидетельствует о перекрытии одного предмета другим, причем верхняя «перекладина» принадлежит перекрывающему предмету, а центральная «ось» разделяет две поверхности перекрываемого предмета. Как в таком случае быть с участками объектов, не имеющими контуров, но, тем не менее, явно демонстрирующими «телесность», подобно изображенному на рис. 3.15А торсу. Возможно, что в этом случае используется некоторое сочетание детекции пространственных частот и ориентации Участки гладких поверхностей moi ут моделироваться путем выделения овальных теней и бликов различной величины и ориентации в пространстве (рис. 3.15Б).

На развитие формальных моделей распознавания в последние годы оказывают особенно сильное влияние идеи, возникшие в рамках работ по машинному зрению, компьютерной графике и нейроинформатике. Наиболее известной в психологии и за ее пределами до сих пор остается вычислительная модель зрительного восприятия Дэвида Марра (Магг, 1982). Эта модель постулирует три этапа переработки зрительной информации. На первом этапе вычисляется грубое, но полное описание изменений яркости в локальных участках изображения (в вариантах модели используется также информация о движении и бинокулярной диспаратности). Описание строится в терминах алфавита типов изменения яркости: КРАЙ, ТЕНИ-КРАЙ, ЛИНИЯ, ПЯТНО и т.д., дополненных параметрами ПОЛОЖЕНИЕ, ОРИЕНТАЦИЯ, КОНТРАСТ, РАЗМЕР и РАЗМЫТОСТЬ. Марр назвал такое описание первичным наброском, поскольку оно выделяет контур и подчеркивает слабые изменения яркости, подобно тому как это мог бы сделать художник, делая набросок картины. По отношению к первичному наброску последовательно применяются операции группировки и различения, результатом чего является выделение фигуры (объектов) из фона.

Рис. 3.15. Гладкие изменения телесных поверхностей (А) можно аппроксимировать (Б) с помощью множества овальных участков, разной ориентации (по Koendennk & van Doom, 2003)

Описание формы выделенных из фона объектов осуществляется лишь на более поздних этапах восприятия. Эти этапы были пояснены в работах Марра значительно менее подробно, чем первичная сенсорная обработка. Первоначально строится так называемая «двух-с-половиной-мерная» (2'/2D) репрезентация предметов. Речь идет о том, что предметы отчасти приобретают телесность, третье измерение, но при этом восприятие остается ограниченным определенным углом зрения, под которым мы их наблюдаем. Собственно трехмерная (3D) репрезентация предметов, не зависящая от специфической точки зрения, строится в последнюю очередь и связана с эффективной «упаковкой» информации в памяти. Характер такой упаковки позволяет понять предложенная Марром и Ни-шихарой гипотеза обобщенных цилиндров. Согласно этой гипотезе, универсальными элементами «ментального конструктора» служат обобщенные цилиндры — цилиндрические элементы разных пропорций, размеров и ориентации. Спецификация формы предметов примерно соответствует микрогенетическому принципу перехода от глобальных к локальным системам отсчета. Примером служит репрезентация формы человеческого тела, показанная на рис. 3.16. Незначительная модификация параметров составляющих тело цилиндров позволяет описать общие очертания других похожих биологических существ и их движений.

Рис. 3.16. Описание сложного объекта с помощью иерархии «обобщенных цилиндров» (по: Магг, 1982).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]