
- •1 Вопрос
- •Вопрос 12:Фруктозо-1,6-дисфосфатный путь (гликолиз)
- •Вопрос 13: Окисление пирувата
- •Вопрос 15: Метаболизм-обмен веществ.
- •Катаболизм-распад,получение энергии Амфиболизм-промежуточный обмен Анаболизм-построение, затрата энергии
- •1) Эндоспоры
- •5) Формирование покровов споры и экзоспориума
- •2) Экзоспоры
- •3) Миксоспоры
- •4) Цисты
- •8. Основные типы брожения:
- •25. Круговорот углерода в мире микроорганизмов. Зависимость судьбы углерода от наличия кислорода в окружающей среде. Полное и неполные окисления. Автотрофы и гетеротрофы. Метаногены, метилотрофы
- •Превращение различных форм азота микроорганизмами. Аммонификация белков. Ассимиляционная и диссимиляционная нитратредукция. Аммонификация нитрата. Азотфиксация. Нитрификация.
- •27. Нитратное дыхание. Микроорганизмы, ведущие диссимиляционную нитратредукцию. Механизмы реакций и ферменты процесса нитратного дыхания. Условия процесса. Энергетические возможности процесса.
- •1 Окисление аммиака до нитрит-аниона
- •2 Окисление нитрит-аниона до нитрат-аниона
- •32. Симбиоз в мире микроорганизмов. Виды симбиоза. Примеры комменсализма, мутуализма, паразитизма. Облигатные и факультативные симбионты.
Вопрос 12:Фруктозо-1,6-дисфосфатный путь (гликолиз)
На фруктозодисфосфатном пути (рис. 7.3) глюкозо-6-фосфат при подготовке к расщеплению изомеризуется глюкозофосфат-изомеразой в фруктозо-6-фосфат; затем происходит фосфорилирование в положении 1 под действием фосфофруктокиназы за счет АТР. Образовавшийся фруктозе- 1,6-дисфосфат расщепляется фруктозодисфосфатальдолазой до дигидроксиацетонфосфата и глицеральдегид-3-фосфата. Оба триозофосфата находятся в равновесии между собой; установление этого равновесия катализируетсятриозофосфат-изомеразой. Дигидроксиацетонфосфат может восстанавливаться глицеролфосфат-дегидрогеназой до глицеролфосфата, который гидролизуется глицерол-1-фосфатазой с образованием глицерола и ортофосфата. Обычно же сначала происходит превращение образовавшегося под действием альдолазы дигидроксиацетонфосфата в глицеральдегид-3-фосфат, который затем окисляется. Последующее дегидрирование представляет собой с энергетической стороны важнейший этап данного пути, а также других путей, приводящих к образованию глицеральдегид-3-фосфата. Часть энергии, освобождающейся при окислении глицеральдегид-3-фосфата в 3-фосфоглицерат (AG0' = - 67 кДж), сохраняется в форме высокоэнергетического фосфата. Сначала происходит присоединение альдегидной группы к SH-группе глицеральдегидфосфат-дегидрогеназы, а затем отщепление водорода, который переносится на NAD. Образовавшийся ацил-8-фермент представляет собой тиоэфир, богатый энергией. В результате фосфоролиза (при котором ацильная группа отделяется от фермента с присоединившимся к ней ортофосфатом) эта энергия сохраняется в 1,3-дисфосфоглицерате. При участии фосфоглицераткиназы богатая энергией фосфатная группа переносится на ADP с образованием 3-фосфоглицерата и АТР. Такого рода процесс называют фосфорилированием на уровне субстрата. Для предшествующего окисления глицеральдегид-3-фосфата наряду с ферментом необходимы также ортофосфат и ADP. В случае их отсутствия расщепление глюкозы на этом уровне прекращается. Это имеет значение для регуляции процесса распада глюкозы («эффект Пастера»). Под действием фосфоглщеромутазы 3-фосфоглицерат превращается в 2-фосфоглицерат, из которого в результате отнятия воды (катализируемого енолазой) образуется фосфоенолпируват. Это тоже высокоэнергетический фосфат, с которого богатая энергией фосфатная группа переносится пируваткиназой на ADP и таким образом сохраняется. Образующийся при этом пируват служит исходным пунктом дальнейших процессов расщепления, преобразования и синтеза. Все реакции фруктозо-1,6-дисфосфатного пути, за исключением трех (гексокиназной, 6-фосфофруктокиназной и пируваткиназной), полностью обратимы. Если весь тризофосфат, образовавшийся в результате расщепления фруктозо-1,6-дисфосфатного пути, за исключением трех (гексокиназной, катаболизма глюкозы по фруктозо-1,6-дисфосфатному пути) слагается из двух молекул пирувата, двух (4 минус 2) молекул АТР и двух моле кул NADH2. Обе реакции, протекающие с выделением энергии при превращении триозофосфата в пируват, служат для анаэробных организмов важнейшими этапами, доставляющими энергию. В анаэробных условиях все микроорганизмы, сбраживающие углеводы (за немногими исключениями), используют энергию, получаемую в результате окисления глицеральдегидфосфата в пируват.
|
Пентозофосфатный путь
В пентозофосфатном пути (рис. 7.4) глюкозо-6-фосфат дегидрируется глюкозо-6-фосфат-дегидрогеназой; при этом водород переносится на NADP и образуется 6-фосфоглюконолактон, который спонтанно или при участии фермента (глюконолактоназы) гидролизуется до 6-фосфоглюконата. Этот последний дегидрируется дегидрогеназой до З-кето-6-фосфоглюконата, из которого затем путем декарбоксилирования образуется рибулозо-5-фосфат. Этим завершается собственно процесс окисления.
Последующие реакции надо рассматривать только как процессы превращения пентозофосфатов в гексозофосфаты и обратно. Благодаря включению такой последовательности реакций окислительный пентозофосфатный путь замыкается в цикл. Рибулозо-5-фосфат находится в равновесии с рибозо-5-фосфатом и ксилулозо-5-фосфатом. Рибозофосфат - важный предшественник в процессе синтеза нуклеотидов и нуклеиновых кислот. При участии транскетолазы и трансальдолазы пентозофосфаты превращаются в две молекулы фруктозо-6-фосфата и одну молекулу глицеральдегид-3-фосфата. В результате изомеризации фруктозо-6-фосфата в глюкозо-6-фосфат и конденсации двух молекул триозофосфата в гексозофосфат все перечисленные реакции замыкаются в один цикл, при одном обороте которого из трех молекул глюкозо-6-фосфата образуются две молекулы фруктозо-6-фосфата, одна молекула глицеральдегид-3-фосфата, три молекулы СО2 и трижды по две молекулы NADPH2. Ферменты глюкозо-6-фосфат-дегидрогеназа и фосфоглюконатдегидрогеназа у многих (если не у большинства) бактерий переносят водород с субстратов не только на NADP, но и на NAD. Описанный цикл представляет собой явно побочный путь, значение которого следует видеть в подготовке важных исходных веществ (пентозофосфатов, эритрозофосфата, глицеральдегид-3-фосфата), а также получении восстановительных эквивалентов (NADPH2) для процессов синтеза. Пентозофосфаты - предшественники нуклеотидов и нуклеиновых кислот - образуются путем дегидрирования и декарбоксилирования глюкозо-6-фосфата, а также в транскетолазной и трансальдолазной реакциях из фруктозо-6-фосфата. |
2-кето-3-дезокси-6-фосфоглюконатный путь
Глюкозо-6-фосфат сначала, как это было описано выше для пентозофосфатного пути, дегидрируется до 6-фосфоглюконата. Под действием фосфоглюконатдегидратазы от него отщепляется вода и образуется 2-кето-3-дезокси-6-фосфоглюконат (рис. 7.5). Кетодезоксифосфоглюконат расщепляется специфической альдолазой на пируват и глицеральдегид-3-фосфат. Последний окисляется до пирувата, так же как и в фруктозодисфосфатном пути. В отношении образования ATP, NADH2 и NADPH2 между описанными путями катаболизма Сахаров имеются существенные различия. На каждый моль глюкозы, окисляемой до пирувата по фруктозобисфосфатному пути, образуется 2 моля АТР и 2 моля NADH2, а при 2-кето-З-дезокси-6-фосфоглюконатном пути - по одному молю ATP, NADH2 и NADPH2. Таким образом, в последнем случае 1 моль АТР и 1 моль NADH2 заменяются на один моль NADPH2, что эквивалентно. Эта эквивалентность согласуется с данными о том, что перенос водорода с NADH2 на NADP с участием трансгидрогеназы во многих случаях требует затраты энергии и протекает с использованием АТР.
Несколько путей ведут от глюкозы к С3-соединениям и среди них к пирувату - одному из важнейших промежуточных продуктов метаболизма. Чаще других используется путь распада через образование фруктозе-1,6-дисфосфата; его называют фруктозодисфосфатным путем, гликолитическим расщеплением, гликолизом или (по имени изучивших его исследователей) путем Эмбдена-Мейергофа-Парнаса (рис. 7.3). Другой ряд реакций, к осуществлению которых способно большинство организмов, образует цикл, известный под названием окислительного пентозофосфатного пути, гексозомонофосфатного пути или схемы Варбурга-Диккенда-Хореккера (рис. 7.4). Обратная последовательность; реакций этого пути включает важные этапы, ведущие к регенерации акцептора СО2 при автотрофной фиксации углекислоты. Только у бактерий встречается, видимо, путь Энтнера-Дудорова, или, как его еще называют, КДФГ-путь (по характерному промежуточному продукту-2-кето-3-дезокси-6-фосфоглюконату, КДФГ; рис. 7.5). Другие сходные механизмы распада гексоз имеют более специальное значение. Глюкоза в клетке сначала фосфорилируется обычно в положении 6 при участии гексокиназы как катализатора и АТР как донора фосфата. Глюкозо-6-фосфат представляет собой метаболически активную форму глюкозы в клетке и служит исходным пунктом для любого из трех упомянутых путей распада. Микроорганизмы заметно различаются между собой по степени использования того или иного из рассмотренных путей (табл. 7.3). Ферменты фруктозодисфосфатного пути, как правило, являются обязательными компонентами клетки, хотя у многих бактерий этот путь действует лишь в обратном направлении (необратимые этапы катализируются при этом другими ферментами). Пентозофосфатный путь тоже, по-видимому, имеет универсальное значение. 2-кето-3-дезокси-6-фосфо-глюконатный путь у бактерий очень широко распространен; он имеет принципиальное значение для использования глюконата. Например, в то время как глюкоза у Escherichia coii и видов Clostridium расщепляется по фруктозобисфосфатному пути, глюконат включается у них в промежуточный обмен через 2-кето-3-дезокси-6-фосфоглюконатный путь. Клостридии и некоторые аэробные бактерии используют для катаболизма глюконата особый вариант 2-кето-3-дезокси-6-фосфоглюконатного пути: сначала глюконат под действием глюконатдегидратазы превращается в 2-кето-З-де-зоксиглюконат, и только на этом этапе происходит его фосфорилирование за счет АТР при участии кетодезоксиглюконокиназы; 2-кето-3-дезокси-6-фосфоглю-конат расщепляется под действием фосфо-2-кето-З-дезоксиглюконатальдолазы. |