
- •Основные проблемы аппаратов сороудерживания, эксплуатация и интенсификация аппаратов процеживания.
- •Основные принципы обеспечения качества работы песколовок основных типов. Эксплуатация песколовок и пескового хозяйства. Контроль качества работы песколовок.
- •Основные проблемы в работе горизонтальных песколовок. Изучение движения воды в песколовках горизонтального типа. Методы повышения эффективности работы горизонтальных песколовок.
- •Пуск, эксплуатация, устройство и расчет отстойников сбраживателей.
- •Методы расчета горизонтальных по.
- •Повышение эффективности по с горизонтальным движением воды. Изменение роли по в технологии нитриденитрификации.
- •Достоинства и недостатки, технологические схемы преаэраторов и биофлокуляторов.
- •Основные сбои в работе по и методы их обнаружения и устранения. Эксплуатация по.
- •Виды, причины и последствия вспухания аи. Организмы, вызывающие нитчатое вспухание аи.
- •Мероприятия по предотвращению и подавлению нитчатого вспухания ила(экплуатационные, технологические и химические).
- •Основные технологические схемы биологического изъятия азота.
- •Расчет нитриденитрификатора.
- •Окислительно восстановительный потенциал в разных биологических условиях. Основные технологические схемы ацидофикации осадка.
- •Технологические схемы удаления фосфора на ос(биологическим и химическим методом).
- •Устройство, эксплуатация и интенсификация сооружений малой канализации(септики, фильтрующие колонны, кассеты и тд).
- •Сооружения и устройства насыщения св кислородом воздуха.
- •Устройство и эксплуатация биофильтров. Окисление зв биопленкой и пуск биофильтров.
- •С объемной загрузкой(мала пористость): гравий, шлак, керамзит и тд
- •С плоскостной загрузкой: пластмассы, асбестоцемент, керамика, металл, ткани и тд.
- •Комбинированные сооружения биологической очистки(комбинация биофильтра и аэротенка).
- •Технологические схемы работы биофильтров.
- •Причины технического несовершенства, основные сбои в работе и их устранение при эксплуатации эрлифтов и гидроэлеваторов на очистных сооружениях канализации.
- •Флотационное илоразделение в схемах оСв.
- •Механический(импеллерный)
- •Барботажный метод
- •Электрический. Распространен.
- •Напорный. Распространен.
- •Биологический.
- •Химический.
- •Прирост аи в сооружениях разной нагрузки. Способы снижения производства ила.
- •Причины применения уплотнителей осадка, повышение эффективности гравитационного уплотнителя.
- •Повышение эффективности флотационных уплотнителей.
- •Применение уплотнителей методом фильтрации и центрифугирования. Эксплуатация уплотнителей.
- •Применение флокулянтов в практике обезвоживания осадков: точки вВода, организация реагентного хоз-ва, дозирование и приготовление флокулянтов.
- •Обеспечение метаногенеза св и осадка.
- •Аппаратное усовершенствование метантенков сбраживания осадков.
- •Классификация и применение аппаратов метанизации, схема метанизации аппаратов св.
- •Реактор общей смеси (обычный метантенк)
- •Пуск, эксплуатация и безопасность эксплуатации метантенков.
- •Пуск, эксплуатация и интенсификация аэробных стабилизаторов.
- •Р азложение органики при помощи жидкофазного окисления.
- •Установка для сжигания осадков в псевдоожиженном слое. Устройство, эксплуатация, пуск, принципы работы.
- •Основные направления использования золы сжигания осадка.
- •Устройство, эксплуатация, повышение эффективности работы камерных фильтрпрессов, ленточных фильтр-прессов и центрифуг.
- •Повышение эффективности работы ип
- •Термолиз и пиролиз осадков, технология пиролиза в многоподовых печах.
- •Технология очистки дымовых газов от сжигания пиролизом осадка.
- •Кондиционирование осадков
- •Компостирование осадков. Вермикомпостирование.
- •Механическое обезвоживание осадка водопроводных станций.
- •Обработка осадков водопровода с канализационными.
- •Особенности анаэробных, аноксидных и аэробных процессов очистки св, достоинства и недостатки.
- •Основные проблемы качества воды и направления их решения. Порядок проведения технического аудита системы водоснабжения.
- •Функции предприятия эксплуатирующего сооружения водоснабжения и водоотведения в период строительства и реконструкции станции.
- •Вторичные отстойники.
- •Проверяют заделку, стыковые швы. То есть соответствие проекту и качество.
- •Хлораторная.
- •Порядок приемки сооружений в эксплуатацию.
- •Организация лаборатории для контроля за очисткой св и обработкой осадка.
- •Основные методы улучшения качества воды в водоеме при отборе. Биопредочистка воды в каналах и колодцах(водная растительность).
- •Оптимизация водоотборных фильтрующих оголовков. Классификация фильтрующих оголовков(4 класс гидротехнических сооружений). Режимы втекания.
- •Эксплуатация водоприменых устройств. Основные требования к водоприемным оголовкам.
- •Использование реагентов нового поколения в водоподготовке. Современные устройства смешения реагентов с водой. Повышение эффективности смесителей.
- •Реконструкция кхо.
- •Р ис. 2. Тонкослойный оСВетлитель, оборудованный тонкослойной кхо:
- •Повышение эффективности отстойников и оСВетлителей со слоем взвешенного осадка.
- •Повышение эффективности фильтров.
- •Повышение эффективности контактных оСВетлителей.
- •Озонирование воды.
- •Сорбционная обработка воды.
- •Озоносорбция.
- •Применение мембранных технологий.
- •Стабилизационная и антикоррозионная подготовка воды (индекс ланжелье и тд).
- •Обезжелезивание природных вод.
- •Специальные методы кондиционирования. Удаление марганца и сероводорода.
- •Обесфторивание, удаление растворенных органических соединений
- •Рекомендация по составлению программы расширенных исследований воды
- •Выбор показателей для рабочей программы производственного контроля качества воды
- •Персонал и оборудование лабораторий. Аттестация и аккредитация лабораторий.
- •Направления рационального использования питьевой воды.
- •Основы инженерного мастерства при выборе направления и интенсификации вкс.
Специальные методы кондиционирования. Удаление марганца и сероводорода.
Удаление марганца и железа
Ряд подземных вод характеризуется одновременно наличием железа и марганца, поэтому зачастую возникает необходимость их обезжелезивания и деманганации.
Железо и марганец присутствуют в природных водах в форме минеральных или органических соединений гуминовых или некоторых жирных кислот. Во втором случае это воды с повышенной окисляемостью, имеющие агрессивный характер. Железо- и марганоорганические комплексы создают условия для развития маргано- и ферробактерий со всеми вытекающими негативными последствиями. При их минеральном происхождении обычно применяются безреагентные технологии, при органическом происхождении — обработка требует использования реагентов, что более сложно и трудоемко, сопряжено со значительными капитальными и эксплуатационными затратами.
Наиболее благоприятные условия для удаления железа и марганца создаются при карбонатной щелочности, равной общей и составляющей не менее 1,35 мг-экв/л
Значение рН исходной воды влияет и на способность фильтрующего материала задерживать железо и марганец. При повышении рН эта способность возрастает.
Присутствующие в воде органические вещества оказывают негативное влияние на процессы удаления железа и марганца, при обработке воды фильтрованием они могут образовывать желатиновые пленки на зернах фильтрующей загрузки, что затрудняет процессы адсорбции и хемосорбции.
Присутствие в воде ферро- и марганобактерий СВидетельствует о необходимости обработки воды сильным окислителем перед ее фильтрованием.
Необходимое количество окислителя для оксидации железа (П) и марганца (П) возрастает при наличии в обрабатываемой воде аммиака, нитритов и нитратов.
Ряд методов удаления железа и марганца:
упрощенная аэрация с одноступенчатым фильтрованием;
1-исходная вода
7-водонапорный бак
8-отвод обезжелезненной воды
9-воздуходувка
10-скорый оСВетлительный фильтр
11-установка для обеззараживания воды
глубокая аэрация и фильтрование либо двойная аэрация и двойное фильтрование;
глубокая аэрация, обработка сильным окислителем, фильтрование, стабилизация;
известкование с коагулированием, напорная флотация и фильтрование либо аэрация, известкование с коагулированием, отстаивание в тонком слое и фильтрование.
Возможно также применение и других методов удаления железа и марганца.
Удаление сероводорода
В некоторых случаях подземные воды содержат избыточные концентрации сероводорода. Для его удаления применяют различные конструкции дегазаторов с использованием методов пенной дегазации, барботирования воздухом, вакуумной дегазации с подогревом и без подогрева воды и др.
Вакуумные дегазаторы представляют собой стальные цилиндрические резервуары, заполненные насадкой из колец рашига или из деревянных реек. Капли воды стекают тонкой пленкой по поверхности насадки, внутри дегазаторов вакуум-насосами или эжекторами создается вакуум, при котором стекающая по поверхности насадки вода кипит. Т.к. растворимость газов в воде при кипении близка к 0, в вакуумном дегазаторе из воды выделяются все растворенные газы, в т.ч. кислород и углекислота. Выделившиеся газы и образовавшиеся пары воды отсасываются из дегазатора вакуум-насосом или эжекторами.
Наибольшее распространение получил метод удаления сероводорода аэрированием. В ряде случаев для более полного удаления сероводорода аэрирование сопровождается подкислением воды до рН < 5 с последующей стабилизацией очищенной воды ее подщелачиванием.
Наиболее эффективными, получившими распространение на станциях большой производительности, являются химические методы — хлорирование, применение перманганата калия, озонирование.
Возможно применение фильтрования воды через модифицированную загрузку. При этом удаление сероводорода осуществляется при адсорбции ионов сероводородных соединений на зернах фильтрующей загрузки. Модификация песчаной загрузки состоит в том, что ее последовательно обрабатывают водными растворами железного купороса и перманганата калия или сульфата натрия и перманганата калия, в результате чего на поверхности зерен кварцевого песка при рН среды 6—9 образуется пленка, в составе которой имеется гидроксид железа и диоксид марганца.
Кроме химических способов окисления сероводорода, используют и биохимический метод, при котором в окислении сульфидных вод принимают участие серобактерии, встречающиеся в серных источниках и стоячих водах. Для массового развития серобактерий необходимы сероводород и кислород.