Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
лекции_shapovalov_a_n_metallurgiya_stali.doc
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
2 Mб
Скачать

8 Непрерывная разливка стали

8.1 Сущность непрерывной разливки

Способ непрерывной разливки заключается в том, что жидкую сталь заливают в интенсивно охлаждаемую сквозную форму — кристалли­затор. Частично затвердевший слиток непрерывно протягивают через него и дополнительно охлаждают в так называемой зоне вторичного охлаждения. В результате в процессе непрерывной заливки металла и его затвердевания образуется непрерывный слиток.

Агрегаты для разливки стали этим методом называют машинами непрерывного литья заготовок (МНЛЗ) или установками непрерыв­ной разливки стали (УНРС).

При использовании МНЛЗ (см. рисунок 25) сталь из сталеразливочного ковша поступает в промежуточный ковш, а из него в кристаллизатор. В кристаллизаторе образуется оболочка, заполненная жидкой сталью по форме и сечению, отвечающему готовой заготовке. Частично затвердевшая заготовка с помощью транспортирующей системы – тянущей клети поступает в зону вторичного охлаждения, где происходит полное затвердевание заготовок. Затвердевший слиток режется на мерные длины и готовые заготовки и с помощью рольганга или других транспортных средств направляются в прокатный цех или на склад.

Р

1- промежуточный ковш;

2-кристаллизатор;

3-зона вторичного охлаждения;

4-тянущая клеть; 5-резка;

6-затравка;

7-закристаллизовавшийся металл

Рисунок 25 – Схемы разливки стали на МНЛЗ (а) и действие затравки (б)

азливку ведут до израсходования металла в сталеразливочном ковше или же разливают без перерыва металл из нескольких ковшей (разливка методом «плавка на плавку»).

Основные преимущества непрерывной разливки по сравнению с разливкой в изложницы:

1) существенно повышается выход годного металла. Так, для спокойной стали получение слябов или блюмов путем непрерывной разливки вместо разливки в изложницы с последующей прокаткой обеспечивает повышение выхода годного на 10—15 % от массы раз­ливаемой стали. Объясняется это тем, что верхняя часть каждого слитка (13—20 %) идет при прокатке в обрезь из-за наличия усадоч­ной раковины и зоны обогащенной ливкатами, а при непрерывной разливке образуется одна усадоч­ная раковина в конце разливки плавки;

2) непрерывно литые слитки или заготовки про­катывают непосредственно на листовых или сортовых станах. Применение непрерывной разливки стали позволяет исключить из про­изводственного цикла операции по подготовке разливочного состава, стрипперованию слитков, прокатке на обжимных станах. Все это приводит к снижению капитальных затрат, устранению ряда трудоемких операций, сокращению длительности производственного цикла от выпуска стали до получения готового проката. То есть упрощается производство по заводу в целом и улучшаются его технико-экономические показатели, уменьшаются энергетические затраты, потребность в рабочей силе и площадь завода;

3) вследствие малых поперечных размеров слитка и высокой ско­рости кристаллизации стали ограничивается развитие ликвации, то есть повышается качество металла;

4) создаются широкие возможности для полной механизации и автоматизации разливки, повышения производительности и улуч­шения условий труда.

На МНЛЗ, в зависимости от назначения, отливают заготовки квадратного сечения размером до 350X350 мм, круглые диаметром до 600 мм, слябы толщиной до 350 мм и шириной до 2600 мм и более сложный сортамент (полые круглые заготовки для производства труб, заготовки двутаврового сечения и др).

Затвердевание непрерывного слитка

Примерный тепловой баланс непрерывного слитка: кристаллизатор – 16-20%; ЗВО – 23-28%; охлаждение на воздухе – 51-61%. В непрерывноотливаемом слитке можно выделить два участка активного охлаждения — кристаллизатор и зону вторичного охлаждения (ЗВО).

Заливаемый в кристаллизатор металл при контакте с его медными водоохлаждаемыми стенками переохлаждается и затвердевает, образуя корку слитка требуемой конфигурации. На расстоянии 200—600 мм от верха кристаллизатора находится зона непосредственного контакта с коркой слитка, где теплоотвод максимальный (1,4—2,3 МВт/м2); ниже вследствие усадки корки между ней и стенками кристаллизатора возникает газовый зазор, резко снижающий теплоотвод (до 0,3—0,6 МВт/м2). В этой зоне вследствие возможной деформации непрочной корки и стенок кристаллизатора могут появляться участки плотного и неплотного контакта, в кото­рых из-за различия в теплоотводе температура и толщина затверде­вающей корки будут различаться. Эта неоднородность способствует возникновению дефектов — в местах уменьшенной толщины корки вследствие термических напряжений могут возникать продольные наружные трещины, а в переохлажденных участках плотного кон­такта — паукообразные или сетчатые поверхностные трещины. Толщина корки на выходе из кристаллизатора должна быть достаточной, чтобы выдержать усилие вытягивания и давление жидкой стали. Эта толщина тем больше, чем больше время пребывания корки кристаллизаторе и обычно составляет 10—25 мм, а температура поверхности слитка на выходе из кристаллизатора 900—1250 °С.

В зоне вторичного охлаждения на поверхность движущегося слитка подают распыленную воду и устанавливают опорные устройства (например, ролики), которые предотвращают возможное выпучивание корки слитка под воздействием давления столба жидкой стали. Выбор способа охлаждения в этой зоне базировался на опыте, который показал, что при слиш­ком интенсивной подаче охладителя (например, подаче воды струями) из-за переохлаждения по­верхности слитка и возникающих при этом тер­мических напряжений в слитке образуются внут­ренние и сетчатые поверхностные трещины. Поэтому применяют распыленную воду («мягкое охлажде­ние»). Расход воды уменьшается по мере отдаления от кристаллизатора; его рассчитывают так, чтобы отводилось тепло, выделяющееся при кристалли­зации стали, а температура корки во избежа­ние образования трещин снижалась бы от исход­ной (900—1250 °С в начале зоны) не более, чем до 800—1000 °С в конце, причем в тем меньшей степени, чем выше склонность стали к трещинообразованию.

Длина зоны вторичного охлаждения составляет 80 — 100 % глу­бины лунки жидкого металла в слитке.

Структурная и химическая неоднородность непрерывнолитой заготовки

Непрерывным способом разливают преимущественно спокойную сталь, поскольку при разливке кипящей стали не достигается суще­ственного увеличения выхода годного и трудно получить достаточ­ную толщину беспузыристой корки в слитке из-за большой скорости разливки и сложности обеспечения необходимой степени окисленности металла.

Образование структурных зон в непрерывном слитке, как и в слитке, отлитом в изложницу, определяется в основном составом и температурой стали, а также теплофизическими условиями затвер­девания. В непрерывном слитке спокойной стали также наблюдаются структурные зоны наружных мелкозернистых, столбчатых и различно ориентиро­ванных срединных кристаллов.

Химическая неоднородность в непрерывном слитке развивается в меньшей степени, чем в слитке, отлитом в изложницу. Это справед­ливо как для дендритной, так и для зональной ликвации. При повы­шенной скорости кристаллизации разделительная диффузия примеси проходит менее полно и соответственно меньшей сказывается и разница концентрации примеси в осях дендритов и межосных участках.

Так же как и дендритная, зональная ликвация уменьшается с ростом скорости затвердевания. Установлено, что при скорости продвижения фронта затвердевания более 1,8 мм/мин зональная ликвация практически отсутствует. В непрерывном слитке даже большого сечения скорость кристаллизации превышает эту критическую величину, связи с этим в непрерывных слитках отсутствует значительная зональная ликвация.

Например, в осевой зоне непрерывных слитков сечением от 75x500 до 180х900 мм степень положительной ликвации примесей достигала значений, %: для углерода 10—14, для серы 5—42 и для фосфора 10,5—47.