
- •А.Н. Шаповалов Металлургия стали курс лекций
- •1 Основные понятия и определения
- •1.1 Основные этапы развития сталеплавильного производства
- •1.2 Классификация сталей
- •1.3 Сталеплавильные шлаки
- •1. Основность шлака
- •Общие принципы установления оптимального шлакового режима плавки
- •2 Основные реакции сталеплавильных процессов
- •2.1 Окисление углерода
- •Основы синхронизации процессов обезуглероживания и нагрева металла
- •2.2 Окисление и восстановление кремния
- •Обеспечение заданного содержания кремния в готовой стали
- •2.3 Окисление и восстановление марганца
- •2.4 Окисление и восстановление фосфора
- •2.5 Удаление серы (десульфурация металла)
- •3 Конвертерное производство стали
- •3.1 История конвертерного производства стали
- •3.2 Устройство кислородного конвертера с верхней продувкой
- •3.3 Шихтовые материалы и требования к ним
- •3.4 Технология кислородно-конвертерной плавки
- •3.5 Дутьевой режим плавки
- •3.6 Поведение составляющих чугуна при продувке
- •3.7 Шлакообразование и требования к шлаку
- •3.8 Поведение железа и выход годного металла
- •3.9 Материальный и тепловой баланс кислородно-конвертерной плавки
- •3.10 Переработка лома в конвертерах
- •3.11 Конвертерные процессы с донной продувкой кислородом
- •Устройство конвертера
- •Технология плавки – отличительные особенности
- •3.12 Сравнение процессов с верхней и донной продувкой кислородом
- •3.13 Конвертерные процессы с комбинированной продувкой
- •4 Выплавка стали в подовых сталеплавильных агрегатах
- •4.1 Принцип работы мартеновской печи
- •4.2 Устройство мартеновской печи
- •4.3 Конструкция отдельных элементов мартеновской печи
- •4.4 Основные особенности и разновидности мартеновского процесса
- •4.5 Основные периоды мартеновской плавки и их значение
- •4.6 Тепловая работа и отопление мартеновских печей
- •4.7 Шлакообразование и шлаковый режим мартеновской плавки
- •4.8 Особенности мартеновского процесса при высоком содержании чугуна в шихте
- •4.9 Показатели и перспективы мартеновского производства стали
- •4.10 Сущность работы двухванных сталеплавильных агрегатов
- •4.11 Технология плавки в двухванных сталеплавильных агрегатах
- •4.12 Перспективы применения двухванных печей
- •5 Внепечная обработка стали
- •5.1 Раскисление и легирование стали в ковше
- •5.2 Обработка металла вакуумом
- •5.3 Продувка металла инертными газами в ковш
- •5.4 Внеагрегатная десульфурация
- •6 Основы теории кристаллизации
- •6.1 Процессы при выпуске и выдержке металла в ковше
- •6.2 Способы разливки стали
- •6.3 Сущность процесса кристаллизации
- •7 Разливка стали в изложницы
- •7.1 Оборудование для разливки стали
- •7.2 Подготовка оборудования к разливке
- •7.3 Строение стальных слитков
- •7.4 Химическая неоднородность слитков
- •7.5 Температура и скорость разливки
- •7.6 Технология разливки стали в изложницы
- •7.6.1 Особенности разливки спокойной стали
- •7.6.2 Особенности разливки кипящей стали
- •7.6.3 Технология разливки полуспокойной стали
- •7.7 Дефекты стальных слитков
- •8 Непрерывная разливка стали
- •8.1 Сущность непрерывной разливки
- •8.2 Классификация мнлз
- •8.3 Основные узлы мнлз
- •8.4 Технология непрерывной разливки
- •8.5 Качество непрерывнолитого слитка
- •8.6 Литейно-прокатные комплексы
- •Рекомендуемая литература
5.2 Обработка металла вакуумом
Газовая фаза образуется при протекании реакции окисления углерода, процессов выделения растворенных в металле водорода и азота, а также процессов испарения примесей цветных металлов.
При обработке вакуумом равновесие реакции [С] + [О] = CO сдвигается вправо, кислород реагирует с углеродом, образуя окись углерода.
[О] = рсо/К [C].
Следовательно, обработка стали в вакууме позволяет уменьшить концентрацию кислорода в расплаве пропорционально снижению остаточного давления.
В тех случаях, когда кислород в металле находится в составе оксидных неметаллических включений, снижение давления над расплавом приводит в результате взаимодействия с углеродом к частичному или полному разрушению этих включений по реакции (МеО) + [С] = [Me] + СОГ.
МnО или Сг2О3, восстанавливаются почти нацело; для восстановления более прочных включений, (А12О3 или ТiO2) требуется очень глубокий вакуум.
Обработка металла вакуумом
влияет и на содержание
в стали водорода и азота.
Cодержание
водорода в металле определяется при
прочих равных условиях давлением
водорода в газовой фазе
Аналогично для азота.
Таким образом, при обработке металла вакуумом в нем уменьшается содержание растворенных кислорода, водорода, азота и содержание оксидных неметаллических включений; в результате выделения большого количества газовых пузырьков металл перемешивается, становится однородным, происходит «гомогенизация» расплава.
Способы вакуумной обработки стали: вакуумирование в ковше (с продувкой инертным газом и подогревом), порционное и циркуляционное вакуумирование, вакуумирование в процессе разливки.
5.3 Продувка металла инертными газами в ковш
Влияние продувки металла и н е р т н ы м и газами на качество металла аналогично обработке вакуумом. Каждый пузырек представляет собой «вакуумную камеру», так как парциальные давления водорода и азота в таком пузырьке равны нулю, поэтому газы, растворенные в металле, переходят в пузырь и вместе с ним удаляются в атмосферу. При продувке инертным газом происходит интенсивное перемешивание металла, усреднение его состава; в тех случаях, когда на поверхности металла наведен хороший шлак, перемешивание облегчает протекание процесса ассимиляции таким шлаком НМВ; если этот имеет высокую основность (а также малую окисленность) происходит также десульфурация металла.
Технически операция продувки больших масс металла инертными газами в ковше проще и дешевле, чем обработка вакуумом, поэтому там, где это возможно, продолжительная по времени продувка инертными газами заменяет обработку вакуумом. Во многих случаях продувку металла инертным газом проводят одновременно с обработкой вакуумом, так как вызываемое продувкой энергичное перемешивание металла ускоряет процессы вакуумирования, делает вакуумирование более эффективным.
В промышленных условиях применяют три способа продувки металла аргоном: через пористые огнеупорные вставки в днище ковша; через ложный стопор, оканчивающийся огнеупорной пробкой с радиально расположенными отверстиями диаметром 0,5— 1,0 мм; через футерованную фурму, опускаемую в металл сверху.
Таким образом, при продувке металла инертными газами достигают: 1) энергичного перемешивания расплава, облегчения протекания процессов удаления в шлак нежелательных примесей; 2) усреднения состава металла; 3) уменьшения содержания газов в металле (кислорода и водорода); 4) облегчения условий протекания реакции окисления углерода; 5) снижения температуры металла.