
- •1.Основные законы постоянного тока
- •2. Цепь переменного тока с активным и индуктивным сопротивлениями.
- •3. Цепь переменного тока с активным и ёмкостным сопротивлениями.
- •4. Электрическая цепь с соединениями r, l, c – элементов.
- •5. Цепь переменного тока с параллельным соединением ветвей.
- •6. Векторные диаграммы для цепей с соединениями r-, l- элементов.
- •7. Векторные диаграммы для цепей с соединениями r-, с- элементов.
- •8. Резонанс напряжений.
- •9. Резонанс токов.
- •10. Фазные и линейные токи и напряжения в трёхфазных цепях.
- •11. Ток в нейтральном проводе в трехфазных цепях.
- •12. Соединение фаз потребителя звездой и треугольником.
- •13. Аварийные режимы при соединении фаз приемника звездой.
- •14. Аварийные режимы при соединении фаз приемника треугольником.
- •15. Симметричный и несимметричный приемники в трехфаных цепях.
- •16. Активная, реактивная, полная мощности трехфазной системы.
- •17. Изменение активной мощности в трехфазных системах.
- •19. Понятие магнитных цепей
- •20. Сходство и различие электрических и магнитных цепей.
- •21. Разветвленные и неразветвленные магнитные цепи.
- •22.Закон полного тока для магнитн цепи
- •23. Свойства ферромагнитных материалов.
- •24. .Задача расчета неразветвленной магнитной цепи.
- •25.Катушка с магнитопроводом в цепи переменного тока
- •26. Векторная диаграмма катушки с магнитопроводом.
- •27. Режим холостого хода трансформатора.
- •28. Режим короткого замыкания трансформатора.
- •29. Режим работы трансформатора под нагрузкой.
- •29. Режим работы тр-ра под нагрузкой
- •30. Трехфазные трансформаторы.
- •31. Включение трансформатора в параллельную работу.
- •32 Расчет Эл нагрузок
- •34.Асинхронные машины
- •35. Режим работы асинхронной машины.
- •36 Устройство и принцип действия асинхронного двигателя.
- •37.Вращающееся магнитное поле статора асинхр.Двигателя
- •38. Вращающееся магнитное поле ротора асинхронного двигателя.
- •39. Рабочее вращающееся магнитное поле асинхронного двигателя.
- •41.Механическая хар-ка асинхронного двигателя.
- •42.Рабочие характеристики асинхронного электродвигателя
- •44. Устройство и области применения мпт.
- •45. Способы соединения цепей якоря и обмотки возбуждения мпт.
- •46. Электрические измерения
- •47.Вольт-амперная хар-ка диода
- •48.Устройство и схема включения транзистора.
- •49.Достижения полупр-й эл-ки.
- •50.Преимущества и недостатки транзисторов.
8. Резонанс напряжений.
если
XL
= Хс,
то
реактивное сопротивление цепи X
= XL
-Хс
=
0. В этом случае цепь носит чисто активный
характер, а сдвиг фаз
=
0. Такой режим называется резонансом
напряжений, поскольку
векторы напряжений на реактивных
элементах - катушке и конденсаторе
- равны по величине, противоположно
направлены и самокомпенсируются. Угловая
частота, при которой в цепи наступает
резонанс, называется резонансной
угловой частотой:ω0=1/
.
Полное сопротивление цепи при резонансе будет чисто активным и имеет минимальное значение
Z
=
При
этом ток i=i(t)
в цепи будет иметь максимальное
действующее значение Imax=I0:
и совпадает по фазе с иcходным
напряжением U=U(t)
При резонансе напряжений действующее значение напряжения на входе цепи U, равное действующему значению напряжения резистора UR. Отношение
определяет кратность превышения напряжения на индуктивном и емкостном элементах над напряжением на резистивном элементе (т.е. над входным напряжением). Эту безразмерную величину принято называть добротностью контура. Иногда рассматривают обратную к добротности величину d =1/Q , называемую затуханием контура, тоже характеризующую резонансные свойства данного контура.
9. Резонанс токов.
В цепи переменного тока, в которой индуктивность и емкость соединены параллельно (рис. 60,а), может возникнуть резонанс токов при условии равенства токов в индуктивности IL„ и емкости IC.В результате резонанса токов общий ток в цепи может быть относительно мал, а в контуре
индуктивности и емкости, где происходят электрические колебания, протекает переменный ток, значительно больший общего. Известно, что при резонансе токов (при r = 0) индуктивное сопротивление равно емкостному и реактивные проводимости равны между собой.
2ПωC=1/2ПωL отсюда следует, что 4П2ω2LC=1; ω2=1/4П2LC
частота
свободных электрических колебаний в
контуре:
Из формулы следует, что, изменяя величину емкости или индуктивности контура, можно изменять — регулировать частоту свободных колебаний, т, е. можно настраивать контур на определенную частоту. Как известно, чтобы в рассматриваемой цепи наступил резонанс токов, необходимо создать такие условия, при которых ток в индуктивности IL ток в емкости Iс были бы равны друг другу.
Допустим, что подбором индуктивности и емкости или изменением частоты созданы условия для резонанса токов, т. е. IL=Ic , XL=XC. На параллельно соединенных сопротивлениях ХL и Хс напряжение одинаково. Ток в индуктивности: I=U/XL, а ток в емкости: I=U/XC .
Построим векторную диаграмму для рассматриваемой цепи (рис. 60, б) при резонансе токов. Отложим в выбранном нами масштабе вектор напряжения U. Ток в индуктивности отстает от напряжения на угол = 90°. Поэтому вектор тока IL отложим вниз под углом 90° к вектору напряжения U. Так как ток в емкости опережает напряжение на угол =90°, то вектор тока Iс, равный по условию резонанса токов вектору тока IL, отложим вверх под углом 90° вектору напряжения U.
На векторной диаграмме видно, что ток в индуктивности и том в емкости сдвинуты по фазе на угол =180о и равны друг другу. Отсюда следует, что общий ток при резонансе токов равен нулю, а полное сопротивление цепи бесконечно велико.
В действительности общий ток будет относительно мал, но не равен нулю. Этот ток, который вырабатывает генератор, является активным и покрывает потери энергии в контуре.