Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Билеты по физике.docx
Скачиваний:
3
Добавлен:
01.03.2025
Размер:
246.59 Кб
Скачать

Механические Волны

Распространение колебаний от точки к точке, от частицы к частице в упругой среде называется механической волной.

Если закрепить один конец упругого шнура, а другому сообщить колебания в направлении, перпендикулярном шнуру, то вдоль него будут распространяться колебания, т. е. будет создаваться волновое движение.

Волна представляет собой колебания, которые при своем распространении не переносят с собой вещество. Волны переносят энергию из одной точки пространства в другую.

Среда называется упругой, если между ее частицами существуют силы взаимодействия, препятствующие какой-либо деформации этой среды. Когда какое-либо тело совершает колебания в упругой среде, то оно воздействует на частицы среды, прилегающие к телу, и заставляет их совершать вынужденные колебания. Среда вблизи колеблющегося тела деформируется, и в ней возникают упругие силы. Эти силы воздействуют на все более удаленные от тела частицы среды, выводя их из положения равновесия. Постепенно все частицы среды вовлекаются в колебательное движение.

Поперечная механическая волна - волна, в которой частицы среды перемещаются перпендикулярно направлению распространения волны. Продольная волна - волна, в которой движение частиц среды происходит вдоль направления распространения волны.

Длина́ волны́ — расстояние между двумя ближайшими друг к другу точками, колеблющимися в одинаковых фазах, обычно длина волны обозначается греческой буквой .[1] По аналогии с волнами, возникающими в воде от брошенного камня, длиной волны является расстояние между двумя соседними гребнями волны. Одна из основных характеристик колебаний

Звуковыми (или акустическими) волнами называются распространяющиеся в среде упругие волны, обладающие частотами в пределах 16—20000 Гц. Волны указанных частот, воздействуя на слуховой аппарат человека, вызывают ощущение звука. Волны с < 16 Гц (инфразвуковые) и > 20 кГц (ультразвуковые) органами слуха человека не воспринимаются.

2)Гипотеза Планка о квантах. Фотоэффект. Уравнение Эйнштейна для фотоэффекта. Фотон

Гипо́теза Пла́нка — гипотеза, выдвинутая 14 декабря 1900 года Максом Планком и заключающаяся в том, что при теплового излучении энергия испускается и поглощается не непрерывно, а отдельными квантами (порциями). Каждая такая порция-квант имеет энергию , пропорциональной частоте ν излучения:

где h или  — коэффициент пропорциональности, названный впоследствии постоянной Планка. На основе этой гипотезы он предложил теоретический вывод соотношения между температурой тела и испускаемым этим телом излучением — формулу Планка.

Фотоэффе́кт — это испускание электронов веществом под действием света (и, вообще говоря, любого электромагнитного излучения). В конденсированных веществах (твёрдых и жидких) выделяют внешний и внутренний фотоэффект.

А. Эйнштейн в 1905 г. показал, что явление фотоэффекта и его закономерности могут быть объяснены на основе предложенной им квантовой теории фотоэффекта. Согласно Эйнштейну, свет частотой не только испускается, как это предполагал Планк, но и распространяется в пространстве и поглощается веществом отдельными порциями (квантами), энергия которых 0=h. Таким образом, распространение света нужно рассматривать не как непрерывный волновой процесс, а как поток локализованных в пространстве дискретных световых квантов, движущихся со скоростью с распространения света в вакууме. Кванты электромагнитного излучения получили название фотонов.

Фото́н — элементарная частица, квант электромагнитного излучения (в узком смысле — света). Это безмассовая частица, способная существовать только двигаясь со скоростью света. Электрический заряд фотона также равен нулю. Фотон может находиться только в двух спиновых состояниях с проекцией спина на направление движения (спиральностью) ±1. Этому свойству в электродинамике соответствует круговая правая и левая поляризация электромагнитной волны. Фотону как квантовой частице свойственен корпускулярно-волновой дуализм, он проявляет одновременно свойства частицы и волны.

Билет №17.

1)Атомистическая гипотеза строения вещества и её экспериментальные доказательства. Модель идеального газа. Абсолютная температура. Температура как мера средней кинетической энергии теплового движения частиц.

Идеальный газ — математическая модель газа, в которой предполагается, что потенциальной энергией взаимодействия молекул можно пренебречь по сравнению с их кинетической энергией. Между молекулами не действуют силы притяжения или отталкивания, соударения частиц между собой и со стенками сосуда абсолютно упруги, а время взаимодействия между молекулами пренебрежимо мало по сравнению со средним временем между столкновениями.

АБСОЛЮТНАЯ температура (термодинамическая температура) - температура Т, отсчитываемая от абсолютного нуля. Понятие абсолютной температуры было введено У. Томсоном (Кельвином), в связи с чем шкалу абсолютной температуры называют шкалой Кельвина или термодинамической температурной шкалой. Единица абсолютной температуры - кельвин (К). 1К = 1 .С. Значения абсолютной температуры связаны с температурой по Цельсия шкале (t .С) соотношением t = Т - 273,15 К.

Температура. Основное уравнение молекулярно-кинетической теории для идеального газа устанавливает связь легко измеряемого макроскопического параметра — давления — с такими микроскопическими параметрами газа, как средняя кинетическая энергия и концентрация молекул.

Но, измерив только давление газа, мы не можем узнать ни среднее значение кинетической энергии молекул в отдельности, ни их концентрацию. Следовательно, для нахождения микроскопических параметров газа нужны измерения еще какой-то физической величины, связанной со средней кинетической энергией молекул. Такой величиной в физике является температура.

2)Законы отражения и преломления света. Полное внутренние отражение. Линзы. Формула тонкой линзы. Оптические приборы

Закон отpажения. Угол падения pавен углу отpажения.

Закон пpеломления. Отношение синуса угла падения к синусу угла пpеломления для монохpоматического света есть величина вполне опpеделенная, не зависящая от угла падения. Это отношение называется показателем пpеломления сpеды.

ПОЛНОЕ ВНУТРЕННЕЕ ОТРАЖЕНИЕ - отражение эл--магн. излучения (в частности, света) при его падении на границу двух прозрачных сред с показателями преломления и из среды с большим показателем преломления ( ) под углом для к-рого Наим. угол падения при к-ром происходит П. в. о., наз. предельным (критическим) или углом полного отражения. Впервые П. в. о. описано И. Кеплером (J. Kepler) в 1600. Поток излучения, падающий при углах

Направление движения энергии световой волны определяется вектором Пойнтинга (система единиц СГС Гаусса), здесь - скорость света в вакууме, и - векторные напряженности электрического и магнитного полей. Длина вектора Пойнтинга равна плотности потока энергии, то есть количеству энергии, которое в единицу времени протекает через единичную площадку перпендикулярную вектору . В изотропной среде направление движения поверхности фиксированной фазы совпадает с направлением движения энергии световой волны. В кристалле эти направления могут не совпадать. Далее будем рассматривать изотропную среду.

Оптические приборы — это устройства, в которых излучение какой-либо области спектра (ультрафиолетовой, видимой, инфракрасной) преобразуется (пропускается, отражается, преломляется, поляризуется). Они могут увеличивать, уменьшать, улучшать (в редких случаях ухудшать) качество изображения, давать возможность увидеть искомый предмет косвенно.

Термин "Оптические приборы" является частным случаем более общего понятия оптических систем, которое также включает в себя биологические органы, способные преобразовывать световые волны.

Лупа- это двояковыпуклая линза, которая увеличивает угол зрения предметов. Увеличение лупы определяется по формуле K=D(начальное)/F. Фокусные расстояния луп обычно составляют 1-10см. Учитывая, что D0(начальное расстояние от глаза)=25см, можно сказать, что лупа увеличивает изображение предмета в 2.5-25раз.

Фотоаппарат- это прибор, который позволяет воспроизводить и хранить изображение на фотопленке, фотобумаге и фотопластинке. Фотоаппарат состоит из объектива и камеры. Линза воспроизводит на экране камеры обратное и уменьшенное изображение A'B' предмета АВ. При получении изображения расстояние между предметом и линзой больше двойного фокуса линзы.

Билет №18.

1)Связь между давлением идеального газа и средний кинетической энергии теплового движения его молекул. Уравнение состояние идеального газа. Изопроцессы.

Молекулярная физика и термодинамика изучают свойства и поведение макроскопических систем, т.е. систем, состоящих из огромного числа атомов и молекул. Типичные системы, с которыми мы сталкиваемся в повседневной жизни, содержат около 1025 атомов.

Уравнение состояния идеального газа (иногда уравнение Клапейрона или уравнение Менделеева — Клапейрона) — формула, устанавливающая зависимость между давлением, молярным объёмом и абсолютной температурой идеального газа. Уравнение имеет вид:

где

  •  — давление,

  •  — молярный объём,

  •  — универсальная газовая постоянная

  •  — абсолютная температура,К.

Изопроцессы — термодинамические процессы, во время которых количество вещества и ещё одна из физических величин — параметров состояния: давление, объём или температура — остаются неизменными. Так, неизменному давлению соответствует изобарный процесс, объёму — изохорный, температуре — изотермический, энтропии — изоэнтропийный (например, обратимый адиабатический процесс). Линии, изображающие данные процессы на какой-либо термодинамической диаграмме, называются изобара, изохора, изотерма и адиабата соответственно. Изопроцессы являются частными случаями политропного процесса.

2)Постулаты специальной теории относительности. Полная энергия. Энергия покоя. Релятивистский импульс.

Специальная теория относительности (СТО; также частная теория относительности) — теория, описывающая движение, законы механики и пространственно-временные отношения при произвольных скоростях движения, меньших скорости света в вакууме, в том числе близких к скорости света. В рамках специальной теории относительности классическая механика Ньютона является приближением низких скоростей. Обобщение СТО для гравитационных полей называется общей теорией относительности.

Эне́ргия — скалярная физическая величина, являющаяся единой мерой различных форм движения и взаимодействия материи, мерой перехода движения материи из одних форм в другие. Введение понятия энергии удобно тем, что в случае, если физическая система является замкнутой, то её энергия сохраняется во времени. Это утверждение носит название закона сохранения энергии. Понятие введено Аристотелем в трактате «Физика».

Уже на нашей памяти закон сохранения импульса претерпел некоторые изменения. Они, однако, не коснулись самого вакона как такового, просто изменилось понятие импульса. В теории относительности, как оказалось, импульс уже не сохраняется, если его понимать так же, как и прежде. Дело в том, что масса не остается постоянной, а изменяется в зависимости от скорости, а потому изменяется и импульс. Это изменение массы происходит по закону

Билет №19.

1) Уже на нашей памяти закон сохранения импульса претерпел некоторые изменения. Они, однако, не коснулись самого вакона как такового, просто изменилось понятие импульса. В теории относительности, как оказалось, импульс уже не сохраняется, если его понимать так же, как и прежде. Дело в том, что масса не остается постоянной, а изменяется в зависимости от скорости, а потому изменяется и импульс. Это изменение массы происходит по закону

Билет №19.

1)Модель строение жидкостей. Насыщенные и ненасыщенные пары. Зависимость давления насыщенного пара от температуры. Кипение. Влажность воздуха. Точка росы. Гигрометр. Психрометр.

Строение жидкостей. Мы имеем довольно ясное представление о строении газов и твердых кристаллических тел. Газ является собранием молекул, беспорядочно движущихся по всем направлениям независимо друг от друга. В твердом теле все (точнее, почти все) молекулы длительно (иногда тысячелетиями) сохраняют взаимное расположение, совершая лишь небольшие колебания около определенных положений равновесия.

Процесс испарения в замкнутое пространство (закрытый сосуд с жидкостью) может при данной температуре происходить только до определенного предела. Это объясняется тем, что одновременно с испарением жидкости происходит конденсация пара. Сначала число молекул, вылетающих из жидкости за 1 с, больше числа молекул, возвращающихся обратно, и плотность, а значит, и давление пара растет. Это приводит к увеличению скорости конденсации. Через некоторое время наступает динамическое равновесие, при ко тором плотность пара над жидкостью становится постоянной. Пар, находящийся в состоянии динамического равновесия со своей жидкостью, называется насыщенным паром. Пар, который не находится в состоянии динамического равновесия со своей жидкостью, называется ненасыщенным.

Кипе́ние — процесс парообразования в жидкости (переход вещества из жидкого в газообразное состояние), с возникновением границ разделения фаз. Температура кипения при атмосферном давлении приводится обычно как одна из основных физико-химических характеристик химически чистого вещества.

Влажность воздуха содержание в воздухе водяного пара; одна из наиболее существенных характеристик погоды и климата. В. в. имеет большое значение при некоторых технологических процессах, лечении ряда болезней, хранении произведений искусства, книг и т.д.

Температура точки росы газа (точка росы) — это значение температуры газа, ниже которой водяной пар, содержащийся в газе, охлаждаемом изобарически, становится насыщенным над плоской поверхностью воды

психро́метрический — прибор для измерения влажности воздуха и его температуры.

2)Дисперсия и поглощение света. Спектроскоп и спектрограф. Различные виды электромагнитных излучений и их практическое применение.

Дисперсия света (разложение света) — это явление зависимости абсолютного показателя преломления вещества от длины волны света (частотная дисперсия), а также, от координаты (пространственная дисперсия), или, что то же самое, зависимость фазовой скорости света в веществе от длины волны (или частоты). Экспериментально открыта Ньютоном около 1672 года, хотя теоретически достаточно хорошо объяснена значительно позднее.

Поглощение света, уменьшение интенсивности оптического излучения (света), проходящего через материальную среду, за счёт процессов его взаимодействия со средой. Световая энергия при П. с. переходит в различные формы внутренней энергии среды; она может быть полностью или частично переизлучена средой на частотах, отличных от частоты поглощённого излучения.

Спектроскоп (спектрометр, спектрограф) — оптический прибор для визуального наблюдения спектра излучения.[1] Используется для быстрого качественного спектрального анализа веществ в химии, металлургии (например, стилоскоп) и т. д.

Электромагнитное излучение подразделяется на: - радиоволны (начиная со сверхдлинных), - инфракрасное излучение, - видимый свет, - ультрафиолетовое излучение, - рентгеновское излучение и жесткое (гамма-излучение). Применение: 1) Радиосвязь; 2) Медицина, безконтактный нагрев; 3) трудно сказать где оно не ипользуется; 4) искуственный загар, искуственное освещение для растений; 5) медицина, дефектоскопия. Свойства: всем электромагнитным излучениям в той или иной свойственны интерференция, дифракция, преломление, и др. Однако, у высокоэнергетического ЭМ-излучения (экстремальный УФ и выше) эти свойства менее выражены.

Билет №20.

1)Модель строение твёрдых тел. Изменение агрегатных состояний веществ. Кристаллические тела. Анизотропия кристаллов. Плотная упаковка. Пространственная решётка. Монокристаллы и поликристаллы. Полиморфизм. Аморфные тела.

Всякое вещество состоит из большого числа мельчайших частичек — молекул. Каждая молекула, в свою очередь, состоит из сравнительно небольшого числа атомов. По взаимному расположению атомов или молекул твердые тела подразделяют на кристаллические и аморфные.

Агрега́тное состоя́ние — состояние вещества, характеризующееся определёнными качественными свойствами: способностью или неспособностью сохранять объём и форму, наличием или отсутствием дальнего и ближнего порядка и другими. Изменение агрегатного состояния может сопровождаться скачкообразным изменением свободной энергии, энтропии, плотности и других основных физических свойств.

В отличие от жидкостей твердое тело сохраняет не только свой объем, но и форму и обладает значительной прочностью. Разнообразные твердые тела, с которыми приходится встречаться, можно разделить на две группы, существенно различающиеся по своим свойствам: кристаллические и аморфные

Анизотропи́я) — неодинаковость свойств среды (например, физических: упругости, электропроводности, теплопроводности показателя преломления, скорости звука или света и др.) по различным направлениям внутри этой среды; в противоположность изотропии.

ПРОСТРА́НСТВЕННАЯ РЕШЕТКА, в кристаллографии — трехмерная система эквивалентных узлов. Основную тройку трансляций — трансляционную группу, или группу переносов для пространственной решетки можно выбрать по-разному, но принято выбирать трансляции кратчайшие, соответствующие симметрии решетки и по возможности образующие между собой прямые углы

Полиморфи́зм в языках программирования — возможность объектов с одинаковой спецификацией иметь различную реализацию.

Язык программирования поддерживает полиморфизм, если классы с одинаковой спецификацией могут иметь различную реализацию — например, реализация класса может быть изменена в процессе наследования

Амо́рфные вещества́ (тела́) — конденсированное состояние вещества, атомарная структура которых имеет ближний порядок и не имеет дальнего порядка, характерного для кристаллических структур. В отличие от кристаллов стабильно-аморфные вещества не затвердевают с образованием кристаллических граней, и, (если не были под сильнейшим анизотропным воздействием — сжатием или электрическим полем, например) обладают изотропией свойств, то есть не обнаруживают различных свойств в разных направлениях

2)Опыт Резерфорда. Ядерная модель атома. Квантовые постулаты Бора. Гипотеза де Бройля о волновых свойствах частиц. Дифракция электронов. Лазеры.

Ядерная модель атома Резерфорда получила свое дальнейшее развитие благодаря работам Нильс Бора, в которых учение о строении атома неразрывно связывается с учением о происхождении спектров. Линейчатые спектры получаются при разложении света испускаемого раскаленными парами или газами. Каждому элементу отвечает свой спектр, отличающийся от спектров других элементов.

Дифракция электронов — процесс рассеяния электронов на совокупности частиц вещества, при котором электрон проявляет волновые свойства. Данное явление называется корпускулярно-волновым дуализмом, в том смысле, что частица вещества(в данном случае взаимодействующие электроны) может быть описана, как волна.

При выполнении некоторых условий, пропуская пучок электронов через материал можно зафиксировать дифракционную картину, соответствующую структуре материала. Поэтому процесс дифракции электронов получил широкое применение в аналитических исследованиях различных материалов. Электронография схожа с рентгеноструктурным анализом и нейтронографией

Ла́зер— усиление света посредством вынужденного излучения), опти́ческий ква́нтовый генера́тор — устройство, преобразующее энергию накачки (световую, электрическую, тепловую, химическую и др.) в энергию когерентного, монохроматического, поляризованного и узконаправленного потока излучения.

Билет №21.

1)Термодинамический подход к излучению физических явлений. Внутренняя энергия и способы её изменения. Первый закон термодинамики. Применение первого закона термодинамики к изотермическому.

Известно, что все тела состоят из молекул. Молекулы любого тела беспорядочно движутся и взаимодействуют друг с другом. Из-за того, что молекулы беспорядочно движутся, они обладают кинетической энергией, а из-за того, что молекулы взаимодействуют друг с другом, они обладают потенциальной энергией. Сумма кинетических энергий беспорядочного движения всех молекул тела и потенциальных энергий их взаимодействия друг с другом называется внутренней энергией тела. Внутренняя энергия тела зависит от температуры и массы тела, от того, в каком агрегатном состоянии находится вещество и от некоторых других факторов

Первый закон термодинамики (закон сохранения энергии для тепловых процессов) определяет количественное соотношение между изменением внутренней энергии системы дельта U, количеством теплоты Q, подведенным к ней, и суммарной работой внешних сил A, действующих на систему.

Первый закон термодинамики - Изменение внутренней энергии системы при ее переходе из одного состояния в другое равно сумме количества теплоты, подведенного к системе извне, и работы внешних сил, действующих на нее:

  Каждое тело имеет вполне определенную структуру, оно состоит из частиц, которые хаотически движутся и взаимодействуют друг с другом, поэтому любое тело обладает внутренней энергией. Внутренняя энергия — это величина, характеризующая собственное состояние тела, т. е. энергия хаотического (теплового) движения микрочастиц системы           (молекул, атомов, электронов, ядер и т. д.) и энергия взаимодействия этих частиц. Внутренняя энергия одноатомного идеального газа определяется по формуле U = 3/2 • т/М • RT.           Внутренняя энергия тела может изменяться только в результате его взаимодействия с другими телами. Существует два способа изменения внутренней энергии: теплопередача и совершение механической работы (например, нагревание при трении или при сжатии, охлаждение при расширении).

2)Модели строения атомного ядра. Ядерные силы. Нуклонная модель ядра. Энергия связи ядра. Ядерные реакции.

Атомное ядро́ — центральная часть атома, в которой сосредоточена основная его масса (более 99,9 %). Ядро заряжено положительно, заряд ядра определяет химический элемент, к которому относят атом. Размеры ядер различных атомов составляют несколько фемтометров, что в более чем в 10 тысяч раз меньше размеров самого атома

В состав ядра входят протоны и нейтроны. Между одинаково заряженные протонами действуют электростатические силы отталкивания, однако ядро не "разлетается" на отдельные частицы. Между протонами и нейтронами внутри ядра действуют ядерные силы - силы притяжения, намного превосходящие электростатические. Ядерные силы по величине в 100 раз превосходят электростатические и называются сильным взаимодействием. Ядерные силы проявляются лишь на расстояниях внутри ядра, поэтому считаются короткодействующими, в то время как электростатические силы - дальнодействующими.

Ядра атомов представляют собой сильно связанные системы из большого числа нуклонов. Для полного расщепления ядра на составные части и удаление их на большие расстояния друг от друга необходимо затратить определенную работу А. Энергией связи называют энергию, равную работе, которую надо совершить, чтобы расщепить ядро на свободные нуклоны. Е связи = - А По закону сохранения энергия связи одновременно равна энергии, которая выделяется при образовании ядра из отдельных свободных нуклонов.

Я́дерная реа́кция — процесс образования новых ядер или частиц при столкновениях ядер или частиц. Впервые ядерную реакцию наблюдал Резерфорд в 1919 году, бомбардируя α-частицами ядра атомов азота, она была зафиксирована по появлению вторичных ионизирующих частиц, имеющих пробег в газе больше пробега α-частиц и идентифицированных как протоны. Впоследствии с помощью камеры Вильсона были получены фотографии этого процесса.

По механизму взаимодействия ядерные реакции делятся на два вида:

  • реакции с образованием составного ядра, это двухстадийный процесс, протекающий при не очень большой кинетической энергии сталкивающихся частиц (примерно до 10 МэВ).

  • прямые ядерные реакции, проходящие за ядерное время, необходимое для того, чтобы частица пересекла ядро. Главным образом такой механизм проявляется при больших энергиях бомбардирующих частиц.

Билет №22.

1)Тепловые машины. Основные части и принципы действия тепловых машин. Коэффициент полезного действия тепловой машины и пути его повышения. Проблемы энергетике и охраны окружающей среды.

Теплова́я маши́на — устройство, преобразующее тепловую энергию в механическую работу (тепловой двигатель) или механическую работу в тепло (холодильник). Преобразование осуществляется за счёт изменения внутренней энергии рабочего тела — на практике обычно пара или газа.Идеальная тепловая машина — машина, в которой произведённая работа и разница между количеством подведённого и отведённого тепла равны. Работа идеальной тепловой машины описывается циклом Карно.

Как же следует поступить, чтобы работа теплового двигателя не прекращалась? Для того чтобы двигатель работал непрерывно, необходимо, чтобы поршень после расширения газа возвращался каждый раз в исходное положение, сжимая газ до первоначального состояния. Сжатие же газа может происходить только под действием внешней силы, которая при этом совершает работу (сила давления газа в этом случае совершает отрицательную работу). После этого вновь могут происходить процессы расширения и сжатия газа. Значит, работа теплового двигателя должна состоять из периодически  повторяющихся  процессов  (циклов)  расширения и сжатия.

Миллионы лет на Земле в результате фотосинтеза непрерывно накапливалась лучистая энергия Солнца. Древние растения и животные, погрузившиеся на дно морей и водоемов, отдают нам ее теперь в виде угля, нефти и природного газа - наших основных источников энергии.

В процессе общественного производства человек влияет на окружающую его среду, которая несет на себе печать труда множества людских поколений, живших в условиях разных, сменявших друг друга общественно-экономических формаций. Формы воздействия человека на природу многообразны. В результате их изменяется внешняя сфера «твердой» Земли, включающая земную кору и верхний слой мантии, или проще - литосферу. Перераспределяются водные ресурсы, становится иным местный климат, преобразуются местные черты рельефа и т. п. Особенно значительно воздействие человека на живую природу как непосредственно, так и через влияние на другие природные компоненты. Изменение одного из компонентов географического ландшафта в результате деятельности человека влечет за собой изменение других.

2)Радиоактивность. Радиоактивные излучения. Закон радиоактивного распада.

Радиоактивность (от лат. radio — излучаю, radius — луч и activus — действенный), самопроизвольное (спонтанное) превращение неустойчивого изотопа химического элемента в другой изотоп (обычно — изотоп другого элемента). Сущность явления Р. состоит в самопроизвольном изменении состава атомного ядра, находящегося в основном состоянии либо в возбуждённом долгоживущем (метастабильном) состоянии. Такие превращения сопровождаются испусканием ядрами элементарных частиц

Закон радиоактивного распада — физический закон, описывающий зависимость интенсивности радиоактивного распада от времени и количества радиоактивных атомов в образце. Открыт Фредериком Содди и Эрнестом Резерфордом, каждый из которых впоследствии был награжден Нобелевской премией. Они обнаружили его экспериментальным путём и опубликовали в 1903 году в работах «Сравнительное изучение радиоактивности радия и тория»[1] и «Радиоактивное превращение»[2], сформулировав следующим образом[3]:

Билет №23.

1)Необратимость тепловых процессов. Второй закон термодинамики и его статистическое истолкование.

Обобщая свойство необратимости тепловых явлений, Р. Клаузиус в 1850 г. предложил одну из формулировок второго закона термодинамики, который называют постулатом Клаузиуса: невозможен процесс, единственным результатом которого был бы переход энергии путем теплообмена от холодного тела к более теплому.

ЗАКОН ТЕРМОДИНАМИКИ ВТОРОЙ

фундаментальный закон, согласно которому процессы, связанные с превращениями энергии, могут происходить самопроизвольно только при условии, что энергия переходит из концентрированной формы в рассеянную (например, тепло горячего предмета самопроизвольно стремится рассеяться в более холодной среде). Другая его формулировка: поскольку некоторая часть энергии всегда рассеивается в виде недоступной для использования тепловой энергии, эффективность самопроизвольного превращения кинетической энергии (например, света) в потенциальную (например, энергию химических соединений протоплазмы) всегда меньше 100%. Важнейшая термодинамических характеристика организмов, экосистем и биосферы в целом — способность создавать и поддерживать высокую степень внутренней упорядоченности, т. е. состояние с низкой энтропией. Система обладает низкой энтропией, если в ней происходит непрерывное рассеяние легко используемой энергии (например, энергия света или пищи) и превращение ее в энергию, используемую с трудом (например, в тепловую). Упорядоченность экосистемы, т. е. сложная структура биомассы, поддерживается за счет дыхания всего сообщества, которое, по Ю. Одуму (1975), как бы “откачивает из сообщества неупорядоченность”. Второму закону термодинамики подчиняется принцип экологических пирамид, а также из него вытекает

2)Ядерные реакции. Законы сохранение при ядерных реакциях. Цепные ядерные реакции. Ядерная энергетика. Термоядерная реакция.

Я́дерная реа́кция — процесс образования новых ядер или частиц при столкновениях ядер или частиц. Впервые ядерную реакцию наблюдал Резерфорд в 1919 году, бомбардируя α-частицами ядра атомов азота, она была зафиксирована по появлению вторичных ионизирующих частиц, имеющих пробег в газе больше пробега α-частиц и идентифицированных как протоны. Впоследствии с помощью камеры Вильсона были получены фотографии этого процесса

Ядерные цепные реакции, ядерные реакции, в которых частицы, вызывающие их, образуются как продукты этих реакций. Пока единственная известная Я. ц. р. — реакция деления урана и некоторых трансурановых элементов (например, 239Pu) под действием нейтронов. После открытия (1939) немецкими учёными О. Ганом и Ф. Штрасманом деления ядер нейтронами (см. Ядра атомного деление)Ф. Жолио-Кюри с сотрудниками, Э. Ферми, У. Зинн и Л. Силард (США) и Г. Н. Флёров показали, что при делении ядра вылетает больше 1 нейтрона:

n+U® А+В+ u. (1)

Ядерная энергетика (Атомная энергетика) — это отрасль энергетики, занимающаяся производством электрической и тепловой энергии путём преобразования ядерной энергии.

Термоядерная реа́кция — разновидность ядерной реакции, при которой лёгкие атомные ядра объединяются в более тяжёлые за счет кинетической энергии их теплового движения.

Билет №24.

1)Элементарный электрический заряд. Два вида электрических зарядов. Закон сохранение электрический заряда. Закон Кулона. Электрическое поле. Напряженность электрического поля. Линии напряженности электрического поля. Принцип суперпозиции электрических полей.

Элемента́рный электри́ческий заря́д — фундаментальная физическая постоянная, минимальная порция (квант) электрического заряда. Равен приблизительно 1,602 176 565(35)·10−19 Кл[1] в Международной системе единиц (СИ) ( 4,806 529 695(105)·10−10 ед. СГСЭ в системе СГС). Тесно связан с постоянной тонкой структуры, описывающей электромагнитное взаимодействие[2].

Если некоторые частицы (или тела) обладают способностью принимать участие в электрических взаимодействиях, то имеет смысл приписать им некоторую характеристику, которая и будет указывать на это их свойство. Такая характеристика получила название электрический заряд. Тела, принимающие участие в электрических взаимодействиях называются заряженными. Таким образом, термин «электрически заряженный» является синонимом выражения «участвует в электрических взаимодействиях». Почему некоторые элементарные частицы обладают электрическим зарядом, а другие нет – никому не известно!

Дальнейшие рассуждения, основанные на экспериментальных данных, призваны конкретизировать эту характеристику, по возможности, сделать ее количественной.

Электрические заряды. Не все явления в природе можно понять и объяснить на основе использования понятий и законов механики, молекулярно-кинетической теории строения вещества и термодинамики. Достаточно обратить внимание на тот факт, что ни механика, ни молекулярно-кинетическая теория, ни термодинамика ничего не говорят о природе сил, которые связывают отдельные атомы в молекулы, удерживают атомы и молекулы вещества в твердом состоянии на определенных расстояниях друг от друга. Законы взаимодействия атомов и молекул удается понять и объяснить на основе представления о том, что в природе существуют электрические заряды.

Зако́н Куло́на — это закон, описывающий силы взаимодействия между точечными электрическими зарядами.

Был открыт Шарлем Кулоном в 1785 г. Проведя большое количество опытов с металлическими шариками, Шарль Кулон дал такую формулировку закона:

Модуль силы взаимодействия двух точечных зарядов в вакууме прямо пропорционален произведению модулей этих зарядов и обратно пропорционален квадрату расстояния между ними

Электрическое поле — одна из составляющих электромагнитного поля; особый вид материи, существующий вокруг тел или частиц, обладающих электрическим зарядом, а также при изменении магнитного поля (например, в электромагнитных волнах). Электрическое поле непосредственно невидимо, но может быть обнаружено благодаря его силовому воздействию на заряженные тела.

Напряжённость электри́ческого по́ля — векторная физическая величина, характеризующая электрическое поле в данной точке и численно равная отношению силы действующей на неподвижный[1] пробный заряд, помещенный в данную точку поля, к величине этого заряда :

.

Из этого определения видно, почему напряженность электрического поля иногда называется силовой характеристикой электрического поля (действительно, всё отличие от вектора силы, действующей на заряженную частицу, только в постоянном[2] множителе).

Линией напряженности электрического поля называется линия, касательная к которой в каждой точке совпадает с вектором напряженности

Линии напряженности электростатического поля начинаются на положительных электрических зарядах и кончаются на отрицательных электрических зарядах или уходят в бесконечность.

2)Солнечная система. Звезды и источники их энергии. Современные представления о происхождении и эволюции Солнца и Звёзд.

Со́лнечная систе́ма — планетная система, включающая в себя центральную звезду — Солнце — и все естественные космические объекты, обращающиеся вокруг Солнца.

Обычно думают, что главная трудность проблемы – в огромной мощности выделения энергии на Солнце и звездах. В действительности дело вовсе не в этом. Удельный темп энерговыделения на Солнце и в звездах более чем скромный. Так, в расчете на один грамм своего вещества Солнце ежесекундно выделяет всего по 2 эрга. По обыденным земным меркам это совершенно ничтожный темп энерговыделения – как в куче гниющих осенних листьев. В человеческом теле темп выделения энергии на четыре порядка (!) выше, чем в Солнце. Однако чтобы поддерживать такой уровень производства энергии, нам нужно трижды в день есть. А Солнце (и звезды) светят миллиарды лет, не питаясь.

Билет №25.

1)Работа сил электрического поля. Потенциальность электрического поля. Потенциал и разность потенциалов. Эквипотенциальные поверхности. Связь между напряженностью и разностью потенциалов.

Для преодоления сил электрического поля при внесении в него электрического заряда необходимо затрачивать определенную работу. Запас энергии (потенциальная энергия) единицы количества электри­чества, находящейся в данной точке электрического поля, называется потенциалом.Потенциал данной точки электрического поля численно равен ра­боте, затрачиваемой на внесение заряда в один кулон из бесконечности в эту точку поля. Эта работа равна потенциальной энергии, которой обладает заряд в один кулон в рассматриваемой точке поля, т. е. φ = A/Q.Единицей измерения потенциала является вольт (В).

Потенциал электростатического поля — скалярная величина, равная отношению потенциальной энергии заряда в поле к этому заряду: φ = W / q = const - энергетическая характеристика поля в данной точке. Потенциал не зависит от величины заряда, помещенного в это поле. Потенциалом электростатического поля называют саклярную физическую величину, равную отношению потенциальной энергии заряда в поле к модулю этого заряда: φ = Wп / q = const Потенциал однородного поля: φ = Wп / q = -Exx + C Значение потенциала в данной точке зависит от выбора нулевого уровня для отсчёта потенциала. Этот уровень выбирают произвольно.

Пусть мы имеем бесконечное равномерное электрическое поле. В точке М помещен заряд + Q- Предоставленный самому себе заряд +Q под действием электрических сил поля будет перемещаться в направлении поля на бесконечно большое расстояние. На это перемещение заряда будет затрачена энергия электрического поля. Потенциалом данной точки поля называется работа, которую затрачивает электрическое поле, когда оно перемещает положительную единицу заряда из данной точки поля в бесконечно удаленную точку. Чтобы переместить заряд +Q из бесконечно удаленной точки снова в точку М, внешние силы должны произвести работу

эквипотенциа́льная пове́рхность

поверхность, все точки которой имеют один и тот же потенциал. Эквипотенциальная поверхность ортогональна силовым линиям поля. Поверхность проводника в электростатике является эквипотенциальной поверхностью.

Напряжённость, силовая характеристика поля, и разность потенциалов, его энергетическая характеристика, связаны однозначно. Вычислим работу поля при малом перемещении заряда двумя способами: A=qEΔlcosα=qElΔl;где α - угол между векторами напряжённости и перемещения, El - проекция напряжённости на перемещение. A=-qΔφ. Приравнивая, получаем: ElΔl=-Δφ=U. Зная напряжённость в каждой точке, можно вычислить разность потенциалов между любыми точками. Зная разность потенциалов между любыми точками, можно вычислить проекцию напряжённости на направление между ними. El=-Δφ/Δl=U/Δl. Отсюда следует,что напряжённость направлена в сторону убывания потенциала. Эта формула позволяет также определить вторую единицу напряжённости - вольт на метр (В/м). 1В/м=1Н/Кл.

2)Наша галактика. Другие галактики. Пространственные масштабы наблюдаемой вселенной. Применимость законов физики для объяснения природы космических обьектов.

гала́ктика— гигантская, гравитационно-связанная система из звёзд и звёздных скоплений, межзвёздного газа и пыли, и тёмной материи. Все объекты в составе галактики участвуют в движении относительно общего масс[2]

Билет №26.

1)Проводники в электрическом поле. Электрическое поле внутри проводящего тела. Электрическое поле заряженного проводящего шара. Измерение разности потенциалов с помощью электрометра. Диэлектрики в электрическом поле. Поляризация Диэлектриков.

Наличие свободных электрических зарядов в проводниках можно обнаружить в следующих опытах. Установим на острие металлическую трубу. Соединив проводником трубу со стержнем электрометра, убедимся в том, что труба не имеет электрического заряда.

Напряженность электрического поля заряженного проводящего шара во всех точках внутри шара равна нулю. На поверхности шара напряженность претерпевает скачок. Она равна здесь: E=(1/(4*pi*e*e0))*((Q/(R^2)); Q-заряд шара ; R-радиус шара; вне шара напряженность электрического поля убывает обратно пропорционально квадрату расстояния от центра шара: E=(1/(4*pi*e*e0))*((Q/(r^2))

Приводя устройство электроскопа, мы указывали, что степень расхождения его листков является мерилом зарядов, находящихся на листках. Однако одновременно электроскоп измеряет и разность потенциалов между листками и оправой электроскопа. При заряжении листков на оправе возникают индуцированные заряды; если при этом оправа соединена с землей, то на оправе остаются лишь заряды, знак которых про­тивоположен знаку зарядов, находящихся на листках. Листки элек­троскопа и оправа представляют собой две обкладки конденсатора; разность потенциалов между этими обкладками тем больше, чем больше заряд Q, сосредоточенный на листках. Таким образом, степень расхождения листков электроскопа измеряет разность по­тенциалов между листками и оправой. Если электроскоп снабжен шкалой, проградуированной в вольтах, то он носит название электро­статического вольтметра.

Установим метровую деревянную линейку на подставку, обеспечивающую возможность вращения вокруг вертикальной оси. Выполним такой же опыт, как с металлической трубой и заряженной палочкой.

Поляризация диэлектриков — явление, связанное с ограниченным смещением связанных зарядов в диэлектрике или поворотом электрических диполей, обычно под воздействием внешнего электрического поля иногда под действием других внешних сил или спонтанно.

Поляризацию диэлектриков характеризует вектор электрической поляризации. Физический смысл вектора электрической поляризации — это дипольный момент, отнесенный к единице объема диэлектрика. Иногда вектор поляризации коротко называют просто поляризацией.

2)Красное смещение в спектрах галактики. Современные взгляды на строение и эволюцию Вселенной.

КРА́СНОЕ СМЕЩЕ́НИЕ (метагалактическое) – понижение частот электромагнитного излучения галактик (света, радиоволн) по сравнению с частотой лабораторных (земных) источников электромагнитного излучения. В частности, линии видимой части спектра смещены к красному его концу, откуда и название "К. с". Осн. физич. особенность К. с. – независимость относит. изменения частоты от самой частоты.К. с. естественно объясняется эффектом Доплера–Физо: при относит. движении источника и приемника частота излучения (длина волны) изменяется – при их взаимном удалении частота понижается (К. с.), при сближении – повышается (фиолетовое смещение). В спектрах галактик фиолетовое смещение наблюдается лишь у нек-рых из них, ближайших к нам, и является следствием движения солнечной системы в Галактике и движения Галактики в Местной группе галактик. Спектры всех др. галактик показывают К. с., что свидетельствует об их удалении от нашей Галактики и друг от друга.

Этой главе под обозримой Вселенной будем понимать ту область Вселенной, которая на сегодняшний день доступна для изучения.

Рассмотрение проблемы следует начать с ознакомления с современными гипотезами о строении Вселенной, поскольку исходя из современного строения Вселенной можно делать какие-либо выводы о её развитии во времени.

На вопросы о строении обозримой части Вселенной в удовлетворительной степени даёт ответ наука. В основном, вся эта часть Вселенной представляет собой вакуум. Вакуум не следует понимать как пустое пространство, в нём происходят квантовые явления (рождение частиц и античастиц), присутствуют фотоны и отдельные атомы. Большая часть излучающего вещества сосредоточена в звёздах, звёзды вместе с некоторым количеством пыли, газа и некоторых других объектов группируются в галактики. Галактики обычно собраны в небольшие группы. Также присутствуют так называемые чёрные дыры

Билет №27.

1)Механическое движение. Основные характеристики механического движения. Относительность движения. Равномерное и равноускоренное прямолинейное движение.

Механи́ческим движе́нием тела называется изменение его положения в пространстве относительно других тел с течением времени. При этом тела взаимодействуют по законам механики.Раздел механики, описывающий геометрические свойства движения без учёта причин, его вызывающих, называется кинематикой.В более общем значении движением называется изменение состояния физической системы с течением времени. Например, можно говорить о движении волны в среде.

Характеристики :

Траектория движения точки (тела) - линия, которую описывает в пространстве точка во время движения. При неподвижной точке траектория движения сама превращается в точку.

Путь - это расстояние между двумя положениями точки, измеренное вдоль траектории ее движения.

Движение тела или точки может характеризоваться не только величиной, но и направлением. Такие характеристики называются векторными или просто векторами.

Перемещение - это вектор, соединяющий начальное и конечное положение точки. Направление и величина перемещения определяются отрезком прямой между начальной и конечной точками движения.

Скорость. Механическое движение характеризуется еще и тем, насколько быстро движется точка (тело). Эта характеристика называется скорость движения. Скорость - величина векторная. Для того, чтобы полностью задать ее, надо задать собственно величину скорости и направление, вдоль которого она измерена. Обычно рассматривается скорость тела вдоль траектории его движения. Тогда величина скорости определяется как путь, пройденный в единицу времени. Иначе говоря, для того, чтобы найти скорость вдоль траектории движения надо путь разделить на время, за которое он был пройден.

Относительное движение

 движение точки (или тела) по отношению к подвижной системе отсчёта перемещающейся определённым образом относительно некоторой другой, основной системы отсчёта, условно наз. неподвижной. Скорость точки в О. д. называется относительной скоростью v, а ускорение — относительным ускорением w. Движение всех точек подвижной системы относительно неподвижной называется в этом случае переносным движением, а скорость и ускорение той точки подвижной системы, через которую в данный момент времени проходит движущаяся точка, — переносной скоростью vпер и переносным ускорением wnep.

Прямолинейным равномерным движением называется механическое движение, при котором тело за любые равные промежутки времени совершает одинаковые перемещения. Равноускоренное движение - движение тела с постоянным ускорением под действием постоянной по величине силы.

2)Радиоактивность. Виды радиоактивных излучений и методы их регистрации. Биологическое действие ионизирующих излучений.

Радиоактивность — это испускание ядрами некоторых элементов различных частиц, сопровождающееся переходом ядра в другое состояние и изменением его параметров. Явление радиоактивности было открыто опытным путем французским ученым Анри Беккерелем в 1896 г. для солей урана. Беккерель заметил, что соли урана засвечивают завернутую во много слоев фотобумагу невидимым проникающим излучением.

а-Распад представляет собой излучение а-частиц (ядер гелия) высоких энергий. При этом масса ядра уменьшается на 4 единицы, а заряд — на 2 единицы.           B-Распад — излучение электронов, заряд которых возрастает на единицу, массовое число не изменяется

Ионизи́рующее излуче́ние — в самом общем смысле — различные виды микрочастиц и физических полей, способные ионизировать вещество. В более узком смысле к ионизирующему излучению не относят ультрафиолетовое излучение и излучение видимого диапазона света, которое в отдельных случаях также может быть ионизирующим. Излучение микроволнового и радиодиапазонов не является ионизирующим[1][2][3][4][5], поскольку его энергии недостаточно для ионизации атомов и молекул в основном состоянии.

Билет №28.

1)Взаимодействие тел. Сила. Законы динамики Ньютона.

Опыт показывает, что при сближении тел (или систем тел) характер их поведения меняется. Поскольку эти изменения носят взаимный характер, говорят, что тела взаимодействуют друг с другом. При разведении тел на очень большие расстояния (на бесконечность) все известные на сегодняшний день взаимодействия исчезают.

Галлилей первым дал правильный ответ на вопрос, какое движение характерно для свободных (т.е. не взаимодействующих тел). Вопреки существующему тогда мнению, что свободные тела “стремятся” к состоянию покоя (), он утверждал, что при отсутствии взаимодействия тела находятся в состоянии равномерного движения (), включающего покой как частный случай.

Сила как векторная величина характеризуется модулем, направлением и «точкой» приложения силы. Последним параметром понятие о силе, как векторе в физике, отличается от понятия о векторе в векторной алгебре, где равные по модулю и направлению векторы, независимо от точки их приложения, считаются одним и тем же вектором . В физике эти векторы называются свободными векторами. В механике чрезвычайно распространено представление о связанных векторах, начало которых закреплено в определённой точке пространства или же может находиться на линии, продолжающей направление вектора (скользящие векторы).[2].

1 закон Ньютона. В качестве 1 закона Ньютоном был взят закон инерции Г. Галилея, который был сформулирован и обоснован нами ранее: существуют инерциальные системы отсчета, т.е. такие системы отсчета, в которых тело движется равномерно и прямолинейно, если другие тела на него не действуют. Основная роль этого закона – подчеркнуть, что в этих системах отсчета все ускорения, приобретаемые телами, являются следствиями взаимодействий тел. Дальнейшее описание движения следует проводить только в инерциальных системах отсчета.

2 закон Ньютона утверждает, что причиной ускорения тела является взаимодействие тел, характеристикой которого является сила. Этот закон дает основное уравнение динамики, позволяющее, в принципе, находить закон движения тела, если известны, силы действующие на него

3 закон Ньютона подчеркивает, что причиной ускорения является взаимное действие тел друг на друга. Поэтому силы, действующие на взаимодействующие тела, являются характеристиками одно и того же взаимодействия. С этой точки зрения нет ничего удивительного в третьем законе Ньютона

2)Волновые свойства света. Электромагнитная природа света.

Наиболее наглядно волновые свойства света обнаруживаются в явлениях интерференции и дифракции. Интерференцией света называют пространственное перераспределение светового потока при наложении двух (или нескольких) когерентных световых волн, в результате чего в одних местах возникают максимумы, а в других минимумы интенсивности (интерференционная картина). Интерференцией света объясняется окраска мыльных пузырей и тонких масляных пленок на воде, хотя мыльный раствор и масло бесцветны. Световые волны частично отражаются от поверхности тонкой пленки, частично проходят в нее. На второй границе пленки вновь происходит частичное отражение волны (рис. 46). Световые волны, отраженные двумя поверхностями тонкой пленки, распространяются в одном направлении, но проходят разные пути. При разности хода I, кратной целому числу длин волн,

Теория электромагнитных волн позволила объяснить с единой точки зрения множество разнообразных электромагнитных явлений. Но из этой теории вытекал еще один вывод огромной важности. Пользуясь данными, полученными из измерения чисто электрических величин (сил взаимодействия между токами и между зарядами), Максвелл смог вычислить скорость, с которой должны распространяться электромагнитные волны. Результат оказался поразительным: скорость получилась равной 300 000 км/с, т. е. совпала с измеренной оптическими способами скоростью света. Максвелл выдвинул тогда смелое предложение, что свет по природе своей есть электромагнитное явление, что световые волны — это лишь разновидность электромагнитных волн, а именно, волны с очень высокими частотами, порядка 1015 герц

Билет №29.

1)Импульс тела. Закон сохранения импульса. Проявление закона сохранение импульса в природе и его использования в техники.

Пусть на тело массой m в течение некоторого малого промежутка времени Δt действовала сила Под действием этой силы скорость тела изменилась на Следовательно, в течение времени Δt тело двигалось с ускорением

Зако́н сохране́ния и́мпульса (Зако́н сохране́ния количества движения) утверждает, что векторная сумма импульсов всех тел (или частиц) замкнутой системы есть величина постоянная.

В классической механике закон сохранения импульса обычно выводится как следствие законов Ньютона. Из законов Ньютона можно показать, что при движении в пустом пространстве импульс сохраняется во времени, а при наличии взаимодействия скорость его изменения определяется суммой приложенных сил.

    В механике закон сохранения импульса и законы Ньютона связаны между собой. Если на тело массой т в течение времени t действует сила и скорость его движения изменяется от v0 до v, то ускорение движения а тела равно Ha основании второго закона Ньютона для силы F можно записать , отсюда следует          

2)Опыты Резерфорда по рассеянию a-частиц. Ядерная модель атома. Квантовые постулаты Бора.

При хорошем вакууме внутри прибора в отсутствие фольги на экране возникал светлый кружок, состоящий из сцинтилляций, вызванных тонким пучком α-частиц. Но когда на пути пучка помещали фольгу, α-частицы из-за рассеяния распределялись на экране по кружку большей площади. Модифицируя экспериментальную установку, Резерфорд попытался обнаружить отклонение α-частиц на большие углы. Совершенно неожиданно оказалось, что небольшое число α-частиц (примерно одна из двух тысяч) отклонилось на углы, большие 90°. Позднее Резерфорд признался, что, предложив своим ученикам эксперимент по наблюдению рассеяния α-частиц на большие углы, он сам не верил в положительный результат.

А́том — частица вещества микроскопических размеров и массы, наименьшая часть химического элемента, являющаяся носителем его свойств.[1][2]

Атом состоит из атомного ядра и электронов. Если число протонов в ядре совпадает с числом электронов, то атом в целом оказывается электрически нейтральным. В противном случае он обладает некоторым положительным или отрицательным зарядом и называется ионом[1]. В некоторых случаях под атомами понимают только электронейтральные системы, в которых заряд ядра равен суммарному заряду электронов, тем самым противопоставляя их электрически заряженным ионам.[2][3].

Ядро атома состоит из положительно заряженных протонов и незаряженных нейтронов, связанных между собой при помощи сильного взаимодействия. Атомы классифицируются по количеству протонов и нейтронов в ядре: количество протонов определяет принадлежность атома некоторому химическому элементу, а число нейтронов — изотопу этого элемента.

вантовые постулаты Бора – это два основных допущения, введённые Н.Бором для объяснения устойчивости атома и спектральных закономерностей

Билет №30.

1)Превращения энергии при механических колебаниях. Свободные вынуждение колебания. Резонанс.

Механическими колебаниями называют движения тела, повторяющиеся точно или приблизительно через одинаковые промежутки времени. Основными характеристиками механических колебаний являются: смещение, амплитуда, частота, период. Смещение — это отклонение тела от положения равновесия. Амплитуда — модуль максимального отклонения от положения равновесия. Частота — число полных колебаний, совершаемых в единицу времени. Период — время одного полного колебания, т. е. минимальный промежуток времени, через который происходит повторение процесса. Период и частота связаны соотношением: v = 1/

  • Колебания, происходящие с постоянной во времени амплитудой, называются незатухающими колебаниями.

Примерами таких колебаний служат колебания математического и пружинного маятников, происходящие в отсутствие сил трения.

Колебания, вызванные кратковременным внешним возбуждением, называются свободными, или собственными. Они происходят под действием внутренних сил, возникающих в самой системе.

Резонанс — это явление резкого возрастания амплитуды вынужденных колебаний при действии на колебательную систему внешней силы с частотой ω, совпадающей с собственной частотой ω0 системы (ω = ω0)При резонансе создаются оптимальные условия для передачи энергии от внешнего источника в систему, так как в течение всего периода работа внешней силы источника над системой положительна. Вспомните процесс раскачивания товарища на качелях — если мы это будем делать очень быстро или очень медленно, качели практически невозможно будет раскачать. Если же мы подберем частоту толчков близкую к частоте собственных колебаний качелей, то раскачивание будет эффективным.

2)Состав ядра атома. Изотопы. Энергия связи ядра атома. Цепная ядерная реакция. Термоядерные реакции.

Ядро атома состоит из нуклонов, которые подразделяются на протоны и нейтроны.

Изото́п— разновидность атома (и ядра) какого-либо химического элемента, отличающаяся от других изотопов только количеством нейтронов в ядре. Название связано с тем, что все изотопы одного атома помещаются в одно и то же место (в одну клетку) таблицы Менделеева. Химические свойства атома зависят от строения электронной оболочки, которая, в свою очередь, определяется в основном зарядом ядра Z (то есть количеством протонов в нём), и почти не зависят от его массового числа A (то есть суммарного числа протонов Z и нейтронов N). Все изотопы одного элемента имеют одинаковый заряд ядра, отличаясь лишь числом нейтронов

Цепна́я я́дерная реа́кция — последовательность единичных ядерных реакций, каждая из которых вызывается частицей, появившейся как продукт реакции на предыдущем шаге последовательности. Примером цепной ядерной реакции является цепная реакция деления ядер тяжёлых элементов, при которой основное число актов деления инициируется нейтронами, полученными при делении ядер в предыдущем поколении.

Термоядерная реа́кция — разновидность ядерной реакции, при которой лёгкие атомные ядра объединяются в более тяжёлые за счет кинетической энергии их теплового движения.

Билет №31.

1)Открытие радиоактивности. Закон радиоактивного распада.

ОТКРЫТИЕ РАДИОАКТИВНОСТИ

Французский физик А.Баккрель 1 марта 1896 года обнаружил по почернению фотопластинки испускание солью урана невидимых лучей сильной проникающей способности. Вскоре он выяснил, что свойством лучеиспускания обладает и сам уран. Затем такое свойство им было обнаружено и у тория. Радиоактивность (от латинского radio – излучаю, radus – луч и activus – действенный), такое название получило открытое явление, которое оказалось привилегией самых тяжелых элементов периодической системы Д.И.Менделеева

Есть несколько определений этого замечательного явления   одно из которых дает такую ее формулировку: «Радиоактивность – это самопроизвольное (спонтанное) превращение неустойчивого изотопа химического элемента в другой изотоп (обычно изотоп другого элемента); при этом происходит испускание электронов, протонов, нейтронов или ядер гелия ( L -частиц)» Сущностью открытого явления было в самопроизвольном изменении состава атомного ядра, находящегося в основном состоянии либо в возбужденном

ЗАКОН РАДИОАКТИВНОГО РАСПАДА

— экспоненциальный закон убывания числа атомных ядер радиоактивного элемента со временем. Выражается формулой N = N0e-λt, где N0 — число атомов данного радиоактивного элемента в любой, произвольно принятый за нулевой момент времени; N — число атомов этого элемента, не распавшихся по прошествии интервала времени t; λ — постоянная распада данного радиоактивного элемента; е — основание натуральных логарифмов З. р. р. выполняется только статистически, для очень большого числа распадающихся атомов; т. о., его можно интерпретировать как вероятностный закон.

2)Взаимодействие заражённых тел. Закон Кулона. Закон сохранение электрического заряда.

Законы взаимодействия атомов и молекул удается понять и объяснить на основе знаний о строении атома, используя планетарную модель его строения. В центре атома находится положительно заряженное ядро, вокруг которого вращаются по определенным орбитам отрицательно заряженные частицы. Взаимодействие между заряженными частицами называется электромагнитным. Интенсивность электромагнитного взаимодействия определяется физической величиной — электрическим зарядом, который обозначается q. Единица электрического заряда — кулон (Кл). 1 кулон — это такой электрический заряд, который, проходя через поперечное сечение проводника за 1 с, создает в нем ток силой 1 А. Способность электрических зарядов как к взаимному притяжению, так и к взаимному отталкиванию объясняется существованием двух видов зарядов.

Зако́н Куло́на — это закон, описывающий силы взаимодействия между точечными электрическими зарядами.

Был открыт Шарлем Кулоном в 1785 г. Проведя большое количество опытов с металлическими шариками, Шарль Кулон дал такую формулировку закона:

Модуль силы взаимодействия двух точечных зарядов в вакууме прямо пропорционален произведению модулей этих зарядов и обратно пропорционален квадрату расстояния между ними

Электрический заряд как раз и относится к категории консервативных характеристик замкнутых систем. Алгебраическая сумма положительных и отрицательных электрических зарядов — чистый суммарный заряд системы — не изменяется ни при каких обстоятельствах, какие бы процессы в системе ни происходили. В частности, при химических реакциях, отрицательно заряженные валентные электроны могут каким угодно образом перераспределяться между внешними оболочками образующих химические связи атомов различных веществ — ни совокупный отрицательный заряд электронов, ни совокупный положительный заряд протонов в ядре в замкнутой химической системе не изменится

Билет №32.

1)Свободные и вынужденные электромагнитные колебания. Колебательный контур и превращение энергии при магнитных колебаниях.

Электромагнитные колебания были открыты почти случайно. После того как изобрели лейденскую банку (первый конденсатор) и научились сообщать ей большой заряд с помощью электростатической машины, начали изучать электрический разряд банки. Замыкая обкладки лейденской банки с помощью проволочной катушки, обнаружили, что стальные спицы внутри катушки намагничиваются. В этом ничего удивительного не было: электрический ток и должен намагничивать стальной сердечник катушки. Странным же было то, что нельзя было предсказать, какой конец сердечника катушки окажется северным полюсом, а какой — южным. Повторяя опыт примерно в одинаковых условиях, получали в одних случаях один результат, а в других — другой. Далеко не сразу поняли, что при разрядке конденсатора через катушку в электрической цепи возникают колебания. За время разрядки конденсатор успевает много раз перезарядиться, и ток меняет направление много раз, в результате чего сердечник может намагничиваться различным образом

Колебательный контур — осциллятор, представляющий собой электрическую цепь, содержащую соединённые катушку индуктивности и конденсатор. В такой цепи могут возбуждаться колебания тока (и напряжения).

Колебательный контур — простейшая система, в которой могут происходить свободные электромагнитные колебания

Резонансная частота контура определяется так называемой формулой Томсона:

При свободных механических колебаниях кинетическая и потенциальная энергии изменяются периодически. При максимальном отклонении тела от положения равновесия его скорость, а следовательно, и кинетическая энергия обращаются в нуль. В этом положении потенциальная энергия колеблющегося тела достигает максимального значения. Для груза на горизонтально расположенной пружине потенциальная энергия – это энергия упругих деформаций пружины. Для математического маятника – это энергия в поле тяготения Земли.

2)Конденсаторы. Электроёмкость конденсатора. Применение конденсаторов.

Конденсаторы. Простейшие способы разделения разноименных электрических зарядов — электризация при соприкосновении, электростатическая индукция — позволяют получить на поверхности тел лишь сравнительно небольшое число свободных электрических зарядов. Для накопления значительных количеств разноименных электрических зарядов применяются конденсаторы.

Электрическая емкость конденсатора. Физическая величина, определяемая отношением заряда q одной из пластин конденсатора к напряжению между обкладками конденсатора, называется электроемкостью конденсатора:

. (42.1)

При неизменном расположении пластин электроемкость конденсатора является постоянной величиной при любом заряде на пластинах.

Единица электроемкости. Единица электроемкости в международной системе — фарад (Ф). Электроемкостью 1 Ф обладает такой конденсатор, напряжение между обкладками которого равно 1 В при сообщении обкладкам разноименных зарядов по 1 Кл. .    В практике широко используются дольные единицы электроемкости — микрофарад (мкФ), нанофарад (нФ) и пикофарад (пФ):

1 мкФ = 10-6 Ф;

1 нФ = 10-9 Ф;

1 пФ = 10-12 Ф

Применение конденсаторов. Конденсаторы как накопители электрических зарядов и энергии электрического поля широко применяются в различных радиоэлектронных приборах и электротехнических устройствах. Они используются для сглаживания пульсаций в выпрямителях переменного тока, для разделения постоянной и переменной составляющих тока, в электрических колебательных контурах радиопередатчиков и радиоприемников, для накопления больших запасов электрической энергии при проведении физических экспериментов в области лазерной техники и управляемого термоядерного синтеза.

Билет №33.

1)Электромагнитные волны и их свойства. Принципы радиосвязи и примеры их практического использования.

Электромагнитные волны представляют собой распространение электромагнитных полей в пространстве и времени.

Как уже было отмечено выше, существование электромагнитных волн было теоретически предсказано великим английским физиком Дж.Максвеллом в 1864 году. Он проанализировал все известные к тому времени законы электродинамики и сделал попытку применить их к изменяющимся во времени электрическому и магнитному полям. Он ввел в физику понятие вихревого электрического поля и предложил новую трактовку закона электромагнитной индукции, открытой Фарадеем в 1831 г.: всякое изменение магнитного поля порождает в окружающем пространстве вихревое электрическое поле, силовые линии которого замкнуты

Принципы радиосвязи не новы: сто лет - срок немалый. За это время радиосредства прошли путь от первых передатчиков сигналов азбуки Морзе до систем спутниковой связи. Радиоэфир наполнился музыкой радиостанций, сигналами далеких галактик и нашими разговорами. Однако с тех пор не изменилось главное - радиоволны. Передаете ли вы сообщение на пейджер, участвуете ли в аварийно-спасательной операции, координируете ли действия по радиостанции или разговариваете с другом по сотовому - все это время информация передается на несущей частоте, модулированной самим сигналом. Для односторонней передачи сообщений или голоса требуется одна частота, а для одновременного обмена информацией - две. Природа распорядилась, чтобы дальность распространения сигнала зависела от несущей частоты, мощности передатчика и чувствительности приемника. Как проявляется эта зависимость, можно продемонстрировать на примере летнего дождя с громом и грозой.

2)Работа и мощность в цепи постоянного тока. Электродвижущая сила. Закон Ома для полной цепи.

Работа тока - это работа электрического поля по переносу электрических зарядов вдоль проводника; Работа тока на участке цепи равна произведению силы тока, напряжения и времени, в течение которого работа совершалась.

Применяя формулу закона Ома для участка цепи, можно записать несколько вариантов формулы для расчета работы тока:

Электродвижущая сила (ЭДС) — скалярная физическая величина, характеризующая работу сторонних (непотенциальных) сил в источниках постоянного или переменного тока. В замкнутом проводящем контуре ЭДС равна работе этих сил по перемещению единичного положительного заряда вдоль контура.

ЭДС можно выразить через напряжённость электрического поля сторонних сил ( ). В замкнутом контуре ( ) тогда ЭДС будет равна:

, где  — элемент длины контура

Закон Ома для полной цепи: сила тока в полной цепи равна электродвижущей силе источника, деленной на сумму сопротивлений однородного и неоднородного участков цепи.

Билет №34.

1)Волновые свойства света. Электромагнитная природа света.

Волновые свойства света

 То, что свет обладает волновыми свойствами, было известно давно. Роберт Гук в своей работе "Микрография" (1665 г.) сравнивает свет с распространением волн. Христиан Гюйгенс в 1690 г. опубликовал "Трактат о свете", в котором развивает волновую теорию света. Интересно, что Ньютон, который был знаком с этими работами, в своем трактате об оптике убеждает себя и других в том, что свет состоит из частиц – корпускул. Авторитет Ньютона какое-то время даже препятствовал признанию волновой теории света. Это тем более удивительно, что Ньютон не только слышал о работах Гука и Гюйгенса, но и сам сконструировал и изготовил прибор, на котором наблюдал явление интерференции, известное сегодня каждому школьнику под названием "Кольца Ньютона". Явления дифракции и интерференции просто и естественно объясняются в волновой теории. Ему же, Ньютону, пришлось изменить себе самому и прибегнуть к "измышлению гипотез" весьма туманного содержания, чтобы заставить корпускулы двигаться должным образом.

Электромагнитная природа света

 Свет обладает как волновыми свойствами, так и корпускулярными свойствами. Такое свойство света называет корпускулярно-волновой дуализм. Но ученые и физики древности не знали об этом, и изначально считали свет упругой волной.

2)Магнитное поле. Действие магнитного поля на электрический заряд и опыты, подтверждающие действие.

Магни́тное по́ле — силовое поле, действующее на движущиеся электрические заряды и на тела, обладающие магнитным моментом, независимо от состояния их движения[1], магнитная составляющая электромагнитного поля[2]

Магнитное поле может создаваться током заряженных частиц и/или магнитными моментами электронов в атомах (и магнитными моментами других частиц, хотя в заметно меньшей степени) (постоянные магниты).

Источником магнитного поля являются движущиеся заряды. Покоящиеся заряды магнитное поле не создают. Действует магнитное поле тоже только на движущиеся заряды, на покоящиеся заряды оно никакого действия не оказывает.    Силу, с которой магнитное поле действует на движущуюся заряженную частицу, называют силой Лоренца.    В конце XIX в. нидерландский физик X. А. Лоренц установил, что эта сила всегда перпендикулярна направлению движения частицы и силовым линиям магнитного поля, в котором эта частица движется

Билет №35.

1)Опыты Резерфорда по рассеянию a-частиц. Ядерная модель атома. Квантовые постулаты Бора.

При хорошем вакууме внутри прибора в отсутствие фольги на экране возникал светлый кружок, состоящий из сцинтилляций, вызванных тонким пучком α-частиц. Но когда на пути пучка помещали фольгу, α-частицы из-за рассеяния распределялись на экране по кружку большей площади. Модифицируя экспериментальную установку, Резерфорд попытался обнаружить отклонение α-частиц на большие углы. Совершенно неожиданно оказалось, что небольшое число α-частиц (примерно одна из двух тысяч) отклонилось на углы, большие 90°. Позднее Резерфорд признался, что, предложив своим ученикам эксперимент по наблюдению рассеяния α-частиц на большие углы, он сам не верил в положительный результат.

А́том — частица вещества микроскопических размеров и массы, наименьшая часть химического элемента, являющаяся носителем его свойств.[1][2]

Атом состоит из атомного ядра и электронов. Если число протонов в ядре совпадает с числом электронов, то атом в целом оказывается электрически нейтральным. В противном случае он обладает некоторым положительным или отрицательным зарядом и называется ионом[1]. В некоторых случаях под атомами понимают только электронейтральные системы, в которых заряд ядра равен суммарному заряду электронов, тем самым противопоставляя их электрически заряженным ионам.[2][3].

Ядро атома состоит из положительно заряженных протонов и незаряженных нейтронов, связанных между собой при помощи сильного взаимодействия. Атомы классифицируются по количеству протонов и нейтронов в ядре: количество протонов определяет принадлежность атома некоторому химическому элементу, а число нейтронов — изотопу этого элемента.

вантовые постулаты Бора – это два основных допущения, введённые Н.Бором для объяснения устойчивости атома и спектральных закономерностей

2)Полупроводники. Собственная и примесная проводимость полупроводников. Полупроводниковые приборы.

Полупроводни́к — материал, который по своей удельной проводимости занимает промежуточное место между проводниками и диэлектриками и отличается от проводников сильной зависимостью удельной проводимости от концентрации примесей, температуры и воздействия различных видов излучения. Основным свойством полупроводника является увеличение электрической проводимости с ростом температуры

Полупроводники — это вещества, удельное сопротивление которых убывает с повышением температуры, наличием примесей, изменением освещенности. По этим свойствам они разительно отличаются от металлов. Обычно к полупроводникам относятся кристаллы, в которых для освобождения электрона требуется энергия не более 1,5—2 эВ. Типичными полупроводниками являются кристаллы германия и кремния, в которых атомы объединены ковалентной связью. Природа этой связи позволяет объяснить указанные выше характерные свойства. При нагревании полупроводников их атомы ионизируются. Освободившиеся электроны не могут быть захвачены соседними атомами, так как все их валентные связи насыщены. Свободные электроны под действием внешнего электрического поля могут перемещаться в кристалле, создавая электронный ток проводимости. Удаление электрона с внешней оболочки одного из атомов в кристаллической решетке приводит к образованию положительного иона. Этот ион может нейтрализоваться, захватив электрон. Далее, в результате переходов электронов от атомов к положительным ионам происходит процесс хаотического перемещения в кристалле места с недостающим электроном — «дырки». Внешне этот процесс хаотического перемещения воспринимается как перемещение положительного заряда. При помещении кристалла в электрическое поле возникает упорядоченное движение «дырок» — дырочный ток проводимости

Полупроводниковые приборы, ППП — широкий класс электронных приборов, изготавливаемых из полупроводников.

К полупроводниковым приборам относятся:

  • Интегральные схемы (микросхемы)

  • Полупроводниковые диоды (в том числе варикапы, стабилитроны, диоды Шоттки),

  • Тиристоры фототиристоры,

  • Транзисторы,

  • Приборы с зарядовой связью,

  • Полупроводниковые СВЧ-приборы (диоды Ганна, лавинно-пролетные диоды),

  • Оптоэлектронные приборы (фоторезисторы, фотодиоды, солнечные элементы, детекторы ядерных излучений, светодиоды, полупроводниковые лазеры, электролюминесцентные излучатели),

  • Терморезисторы, датчики Холла.