Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Билеты по физике.docx
Скачиваний:
1
Добавлен:
07.12.2019
Размер:
246.59 Кб
Скачать

Билет №2

1)Научные гипотезы, физические законы и теории, границы и их применимости.

Гипотеза -- предположение или догадка, опирающаяся на полученные или уже имеющиеся данные. В смысле истинности она носит вероятностный характер. То есть истинность или ложность гипотезы в данный момент не установлена.

Функции гипотезы: обобщение опыта, исходный пункт рассуждения, задание цели (ориентировка исследования), интерпретация данных, защита других гипотез перед натиском новых появившихся фактов.

Классификация научных гипотез.

  1. По назначению:

    1. объясняющие -- претендующие на истинность;

    2. рабочие -- не претендующие на истинность; используются для систематизации.

  2. По содержанию.

    1. гипотезы-факты -- предположения о существовании некоторых фактов;

    2. гипотезы-законы -- предположения о существовании законов (устойчивых, регулярных, повторяющихся связей между фактами).

Существуют две фундаментальные точки зрения на гипотезу как предмет философского исследования: неопозитивистская (с 20-30 годов XX века) и постпозитивистская (со второй половины 50 годов XX века). Согласно первой, философия науки рассматривает контекст подтверждения (или оправдания), а контекст открытия -- прерогатива психологии науки. Понятие об этих контекстах ввёл Рейхенбах. Постпозитивисты (Хэнсон, Кун) включили контекст открытия в философию науки, но не в алгоритмическом смысле, а в аналитическом: анализируется связь новой идеи с имеющимся знанием. То есть гипотезы не возникают из ничего. Так или иначе они берутся как результат случайного или умышленного анализа имеющихся данных и теорий. Кун: парадигмальное знание может приводить к оригинальным гипотезам. Социокультурная ситуация, в частности, мировоззрение, учёного также влияет на выдвижение гипотез. Кроме этого есть субъективные факторы, например, интуиция. Однако интуиция срабатывает на фоне проделанной работы.

2)Электрический ток. Последовательное и параллельное соединение проводников. Электродвижущая сила (эдс). Закон ОМА для полной электрической цепи.

Если погрузить в проводящую жидкость, напр. в раствор серной кислоты, два разнородных металла, напр. Zn и Cu, и соединить эти металлы между собой металлической проволокой, то в этой системе возникает особый процесс, называемый электрическим током. Указанный выше способ получения Э. тока не единственный и даже не самый лучший, он только исторически первый. Э. ток возникает и в замкнутой цепи из двух металлов, если вызвать разность температур двух спаев этих металлов (напр. подогревая один спай; см. Электричество, Термоэлектричество).

Последовательное и параллельное соединения в электротехнике — два основных способа соединения элементов электрической цепи. При последовательном соединении все элементы связаны друг с другом так, что включающий их участок цепи не имеет ни одного узла. При параллельном соединении все входящие в цепь элементы объединены двумя узлами и не имеют связей с другими узлами, если это не противоречит условию.

При последовательном соединении проводников сила тока во всех проводниках одинакова.

эдс, физ. величина, характеризующая действие сторонних (непотенциальных) сил в источниках пост. или перем. тока; в замкнутом проводящем контуре равна работе этих сил по перемещению единичного положит. заряда вдоль всего контура. Если через Есгр обозначить напряжённость поля сторонних сил, то эдс ? в замкнутом контуре L равна

где dl — элемент длины контура.

Потенц. силы электростатич. поля не могут поддерживать пост. ток в цепи, т. к. работа этих сил на замкнутом пути равна нулю. Прохождение же тока по проводникам сопровождается выделением энергии — нагреванием проводников. Сторонние силы приводят в движение заряж. ч-цы внутри генераторов, гальванич. элементов, аккумуляторов и др. источников тока.

Билет №3

1)Механическое движение и его относительность, Уравнения прямолинейного равноускоренного движения.

Механическое движение – это изменение положения тела в пространстве относительно других тел.

Например, автомобиль движется по дороге. В автомобиле находятся люди. Люди движутся вместе с автомобилем по дороге. То есть люди перемещаются в пространстве относительно дороги. Но относительно самого автомобиля люди не движутся. В этом проявляется относительность механического движения. Далее кратко рассмотрим основные виды механического движения.

Поступательное движение – это движение тела, при котором все его точки движутся одинаково.

Например, всё тот же автомобиль совершает по дороге поступательное движение. Точнее, поступательное движение совершает только кузов автомобиля, в то время как его колёса совершают вращательное движение.

Вращательное движение – это движение тела вокруг некоторой оси. При таком движении все точки тела совершают движение по окружностям, центром которых является эта ось.

Упоминавшиеся нами колёса совершают вращательное движение вокруг своих осей, и в то же время колёса совершают поступательное движение вместе с кузовом автомобиля. То есть относительно оси колесо совершает вращательное движение, а относительно дороги – поступательное.

Колебательное движение – это периодическое движение, которое совершается поочерёдно в двух противоположных направлениях.

Например, колебательное движение совершает маятник в часах.

Поступательное и вращательное движения – самые простые виды механического движения.

Такое прямолинейное движение, при котором скорость тела за любые равные промежутки времени изменяется одинаково, называют равноускоренным прямолинейным движением. Быстроту изменения скорости характеризуют величиной, обозначаемой "а" и называемой ускорением.

Ускорением называют векторную величину, равную отношению изменения скорости тела (v - v0) к промежутку времени t, в течение которого это изменение произошло: a=(v-v0)/t. (1.9)

Здесь V0 - начальная скорость тела, т. е. его мгновенная скорость в момент начала отсчета времени; v - мгновенная скорость тела в рассматриваемый момент времени.

Из формулы (1.9) и определения равноускоренного движения следует, что в таком движении ускорение не изменяется. Следовательно, прямолинейное равноускоренное движение есть движение с постоянным ускорением (a=const). В прямолинейном равноускоренном движении векторы v0, v и а направлены по одной прямой. Поэтому модули их проекций на эту прямую равны модулям самих этих векторов, и формулу (1.9) можно записать в виде a=(v-v0)/t. (1.10)

2) Электрический ток в газах. Самостоятельный электрический разряд. Виды самостоятельного разряда. Плазма.

В обычных условиях газ - это диэлектрик, т.е. он состоит из нейтральных атомов и молекул и не содержит свободных носителей эл.тока. Газ-проводник - это ионизированный газ. Ионизированный газ обладает электронно-ионной проводимостью.

Воздух является диэлектриком в линиях электропередач, в воздушных конденсаторах, в контактных выключателях.

Воздух является проводником при возникновении молнии, электрической искры, при возникновении сварочной дуги.

Самостоятельный разряд - разряд, при котором проводимость газа поддерживается электрическим полем без внешних воздействий. Основным механизмом ионизации газа является ионизация атомов и молекул вследствие ударов электронов.

В зависимости от давления газа и приложенного к электродам напряжения различают тлеющий, коронный, дуговой и искровой разряды.

Плазмой в физике и химии называют ионизированный, электрически квазинейтральный газ. Плазма считается четвертым (после твердого, жидкого и газообразного) агрегатным состоянием вещества. Слово «ионизированный» означает, что от значительной части атомов или молекул отделен по крайней мере один электрон. Слово «квазинейтральный» означает, что несмотря на наличие свободных зарядов (электронов и ионов) суммарный электрический заряд плазмы равен нулю. Присутствие свободных электрических зарядов делает плазму проводящей средой, что обуславливает ее заметно большее (по сравнению с другими агрегатными состояниями вещества) взаимодействие с магнитным и электрическим полями. Четвертое состояние вещества было открыто У. Круксом в 1879 г. и названо «плазмой» И. Ленгмюром в 1928 г.

Билет №4

1)Движение по окружности с постоянной по модулю скоростью. Период и частота. Центростремительное ускорение.

Движение по окружности с постоянной по модулю скоростью

Криволинейное движение – движение, траекторией которого является кривая линия. Вектор скорости в любой точке направлен по касательной к траектории. Любой участок криволинейного движения приближённо можно представить в виде дуги окружности.

В школьном курсе физики и на ЕГЭ таких сложных траекторий не будет, только движение по окружности. В задачах высокой сложности (раздел С) может быть переход от одного вида движения к другому: шарик катится по прямой и попадает в дугообразный желоб. Или, разогнавшись по дугообразной траектории, вылетает под углом к горизонту. В таких задачах надо рассмотреть каждый участок траектории отдельно.

 

Движение по окружности с постоянной по модулю скоростью – простейший вид криволинейного движения. Это движение с переменным ускорением.

Важнейшей характеристикой механических, электрических, электромагнитных и всех других видов колебаний является период-время, в течение которого совершается одно полное колебание. Если, например, маятник часов-ходиков делает за 1 с два полных колебания, период каждого колебания равен 0,5 с. Период колебаний больших качелей - около 2 с, а период колебаний струны может быть от десятых до десятитысячных долей секунды.

Другой величиной, характеризующей колебания, является частота (от слова quotчастое-число", показывающее, сколько полных колебаний в секунду совершают маятник часов, звучащие тела, ток в проводнике и т. п. Частоту колебаний оценивают единицей, носящей название герц (сокращенно пишут: Гц): 1 Гц-это одно колебание в 1 с. Если, например, звучащая струна совершает 440 полных колебаний в 1 с (при этом она создает тон "ля" первой октавы), говорят, что частота ее колебаний 440 Гц. Частота переменного тока электроосветительной сети 50 Гц. При таком токе электроны в .проводниках в течение 1 с текут попеременно 50 раз в одном направлении н столько же раз в обратном, т. е. совершают за 1 с 50 полных колебаний.

Центростремительное ускорение — компонента ускорения точки, характеризующая изменение направления вектора скорости для траектории с кривизной. (Вторая компонента, тангенциальное ускорение, характеризует изменением модуля скорости.) Направлено к центру кривизны траектории, чем и обусловлен термин. По величине равно квадрату скорости, поделенному на радиус кривизны. Термин «центростремительное ускорение» в целом эквивалентен термину «нормальное ускорение»; различия лишь стилистические (иногда исторические).

Наиболее простым примером центростремительного ускорения является вектор ускорения при равномерном движении по окружности (направленный к центру окружности).

2)Электрический ток в растворах и расплавах электролитов. Закон Фарадея. Определение заряда одновалентного иона. Технические применения электролиза.

Электрический Ток в Растворах и Расплавах Электролитов

Растворы солей, кислот и оснований называются электролитами. Химически чистая вода почти не проводит электрического тока, но если растворить в воде какую-нибудь соль, например медный купорос, то ток через нее пойдет. При протекании электрического тока через раствор электролитов вместе с зарядом всегда переносится вещество (это явление называется электролизом). Отсюда следует, что носителями тока в этих проводниках являются ионы.

ЗАКОНЫ ФАРАДЕЯ, два закона ЭЛЕКТРОЛИЗА и три закона ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ, сформулированные Майклом ФАРАДЕЕМ. В современной интерпретации законы электролиза гласят, что (1) количество продуктов химических реакций в процессе электролиза пропорционально силе заряда и (2) количество продуктов химических реакций, которым подвергается вещество в результате воздействия некоторого количества электрического тока, пропорционально электрохимическому эквиваленту вещества.

Электролиз широко используется в металлургии для получения чистых ме­таллов из их соединений. Процесс ведется с растворимыми или с нераствори­мыми анодами в растворе или в расплаве солей. В первом случае анодом слу­жит неочищенный металл. Он электролитическим путем переводится в раствор, а затем в очищенном виде осаждается на катоде. Примером электролиза с растворимым анодом может служить электроли­тическое рафинирование (от франц. слова «raffiner»—очищать) меди. Процесс электролиза протекает согласно вышеописанной схеме в электролитической ван­не, заполненной раствором сернокислой меди CuS04; анодами служат плиты, отлитые из неочищенной меди, между ними помещаются тонкие (1 мм) листы чистой меди. При электролизе медь анодов переходит в раствор, а затем осаж­дается на катодах; примеси выпадают на дно ванны в виде шлама (осадка). Расход электроэнергии при этом 300 квт/ч на тонну.

Билет №5.

1)Первый закон Ньютона. Инерциальная система отсчета.

Первый закон Ньютона гласит, что тело движется прямолинейно и равномерно, или находится в состоянии покоя, если результирующая всех действующих на тело сил равна нулю. Первый закон: всякое тело пребывает в состоянии покоя или равномерного прямолинейного движения до тех пор, пока действующие на него силы не изменят это состояние.

 Система отсчёта, в которой справедлив закон инерции: материальная точка, когда на неё не действуют никакие силы (или действуют силы взаимно уравновешенные), находится в состоянии покоя или равномерного прямолинейного движения. Всякая система отсчёта, движущаяся по отношению к И. с. о. поступательно, равномерно и прямолинейно, есть также И. с. о. Следовательно, теоретически может существовать сколько угодно равноправных И. с. о., обладающих тем важным свойством, что во всех таких системах законы физики одинаковы (так называемый принцип относительности). Помимо закона инерции, в любой И. с. о. справедливы также 2-й закон Ньютона (см. Ньютона законы механики) и законы сохранения количества движения (См. Количество движения) (импульса), момента количества движения (См. Момент количества движения) и движения центра инерции (См. Центр инерции) (или центра масс) для замкнутых, т. е. не подверженных внешним воздействиям, систем

2)Электрический ток в полупроводниках. Зависимость сопротивления полупроводников от внешних условий. Собственная проводимость полупроводников. Донорные и акцепторные примеси.

К числу полупроводников относятся многие химические элементы (германий, кремний, селен, теллур, мышьяк и др.), огромное количество сплавов и химических соединений. Почти все неорганические вещества окружающего нас мира – полупроводники. Самым распространенным в природе полупроводником является кремний, составляющий около      30 % земной коры.

      Качественное отличие полупроводников от металлов проявляется в зависимости удельного сопротивления от температуры (рис.9.3)

Рис. 9.3