
- •Основные параметры и механизмы
- •Базовые концепции построения операционных систем реального времени
- •Монолитная архитектура
- •Модульная архитектура на основе микроядра
- •Объектная архитектура на основе объектов-микроядер
- •Интерфейсы вс
- •Принципы функционирования интерфейса
- •Программное обеспечение интерфейса
- •Аппаратные средства интерфейса
- •Виды интерфейсов ос
Интерфейсы вс
Интерфейс - это аппаратное и программное обеспечение (элементы соединения и вспомогательные схемы управления, их физические, электрические и логические параметры), предназначенное для сопряжения систем или частей системы (программ или устройств). Под сопряжением подразумеваются следующие функции:
выдача и прием информации;
управление передачей данных;
согласование источника и приемника информации.
В связи с понятием интерфейса рассматривают также понятие шина (магистраль) - это среда передачи сигналов, к которой может параллельно подключаться несколько компонентов вычислительной системы и через которую осуществляется обмен данными. Очевидно, для аппаратных составляющих большинства интерфейсов применим термин шина, поэтому зачастую эти два обозначения выступают как синонимы, хотя интерфейс - понятие более широкое.
Для интерфейсов, обеспечивающих соединение "точка-точка" (в отличие от шинных интерфейсов ), возможны следующие реализации режимов обмена: дуплексный, полудуплексный и симплексный. К дуплексным относят интерфейсы, обеспечивающие возможность одновременной передачи данных между двумя устройствами в обоих направлениях. В случае, когда канал связи между устройствами поддерживает двунаправленный обмен, но в каждый момент времени передача информации может производиться только в одном направлении, режим обмена называется полудуплексным. Важной характеристикой полудуплексного соединения является время реверсирования режима - то время, за которое производится переход от передачи сообщения к приему и наоборот. Если же интерфейс реализует передачу данных только в одном направлении и движение потока данных в противоположном направлении невозможно, такой интерфейс называют симплексным.
Важное значение имеют также следующие технические характеристики интерфейсов:
вместимость (максимально возможное количество абонентов, одновременно подключаемых к контроллеру интерфейса без расширителей);
пропускная способность или скорость передачи (длительность выполнения операций установления и разъединения связи и степень совмещения процессов передачи данных);
максимальная длина линии связи;
разрядность;
топология соединения.
Принципы функционирования интерфейса
Существует несколько методов реализации интерфейса АЦП – процессор ПК.
Схема “самых последних данных”. В этом методе реализации интерфейса АЦП работает непрерывно. В конце каждого цикла преобразования он обновляет данные в выходном буферном регистре и затем автоматически начинает новый цикл преобразования. Микропроцессор просто считывает содержимое этого буфера, когда ему нужны самые последние данные. Этот метод подходит для тех применений, где необходимость в обновлении данных возникает лишь от случая к случаю.
Схема “запуска-ожидания”. Микропроцессор инициирует выполнение преобразования каждый раз, когда ему нужны новые данные, и затем непре-
рывно тестирует состояние АЦП, чтобы узнать, закончилось ли преобразование. Зафиксировав конец преобразования, он считывает выходное слово преобразователя. В возможной модификации этого метода микропроцессор находится в состоянии ожидания в течение интервала времени, превышающего предполагаемое время преобразования, и затем считывает выходные данные. Этот метод несколько проще в реализации, но при этом микропроцессор отвлекается от выполнения всех других программ на время преобразования.
Использование прерывания микропроцессора. Этот метод основан на возможности использования системы прерываний микропроцессора. Как и в предыдущей схеме, процессор или таймер запускают преобразователь, но затем микропроцессор может продолжать выполнение других заданий. Когда преобразование завершено, АЦП вызывает прерывание микропроцессора. Микропроцессор прекращает выполнение текущей программы и сохраняет всю необходимую информацию для последующего восстановления этой программы. Затем он осуществляет поиск и использование ряда команд (обслуживающая программа – обработчик прерывания), предназначенных для выборки данных от АЦП. После того как обслуживающая программа выполнена, микропроцессор возвращается к выполнению исходной программы.
Задача поиска обслуживающей программы иногда решается путем выполнения другой программы (программы или процедуры последовательного опроса – поллинга), которая определяет источник прерывания путем последовательной проверки всех возможных источников. Гораздо эффективнее подход, связанный с использованием векторных прерываний. Этот подход основан на хранении адресов отдельных обслуживающих программ в заранее определенной области памяти, называемой векторной таблицей. В ответ на сигнал прерывания микропроцессор теперь обращается к определенной ячейке памяти, в которую пользователем занесен адрес соответствующей обслуживающей программы. Реальная эффективность этого метода проявляется в системах с большим числом источников прерываний, как в случае IBM PC. В таких системах, как правило, используется специальное устройство, называемое контроллером прерываний. Контроллер прерываний, например Intel 8259А (другие семейства микропроцессоров имеют эквивалентные устройства), организует различные приходящие сигналы прерываний в приоритетные очереди (выстраивает в порядке их значимости), посылает сигнал прерывания в микропроцессор и указывает ему на нужную ячейку в векторной таблице.