
- •Содержание
- •1.1. Сущность и составные части экономической информатики
- •1.2. Понятия, методы получения и свойства информации
- •1.3. Информация, данные и операции с ними
- •1.4. Особенности, классификация и требования к экономической информации
- •Классификация экономической информации
- •1.5. Экономические информационные системы, процессы и технологии
- •2.1. Кодирование данных
- •2.2. Кодирование текстовых данных
- •2.3. Кодирование графических данных
- •2.4. Кодирование звуковой информации
- •2.5. Файловая структура, единицы и способы измерения данных
- •3.1. Понятия о системах счисления
- •3.2. Правила перевода из одной системы счисления в другую
- •3.3. Арифметические операции в системах счисления
- •3.4. Представление чисел в компьютере
- •3.5. Вещественные числа
- •4.1. Логические выражения и логические операции
- •4.2. Логические законы и правила преобразования логических выражений
- •4.3. Базовые логические элементы
- •4.4. Сумматор двоичных чисел
- •4.5. Триггер
- •5.1. Принципы работы компьютера
- •5.2. Формат, структура и виды команд
- •5.3. Сущность архитектуры компьютера
- •5.4. Классификация архитектур компьютера
- •5.5. Интерфейсы компьютера
- •6.1. Общее устройство и основные блоки компьютера
- •6.2. Микропроцессор, его типы и структура
- •6.3. Системная шина
- •6.4. Запоминающие устройства
- •Распределение одномегабайтной области оп
- •6.5. Дополнительные и внешние устройства
- •7.1. Классификация эвм по принципу действия
- •7.2. Классификация эвм по этапам создания
- •7.3. Классификация эвм по назначению
- •7.4. Классификация эвм по размерам и функциональным возможностям
- •8.1. Понятия о компьютерных сетях
- •8.2. Классификация сетей
- •8.3. Топология сети
- •8.4. Передача данных
- •8.5. Звенья данных
- •8.6. Защита информации в компьютерных сетях
- •9.1. Структура и принципы построения сети Интернет
- •9.2. Способы доступа в Интернет
- •9.3. Адресация в сети Интернет
- •9.4. Электронная почта
- •9.5. Применение Интернета в экономике и бизнесе
- •10.1. Основные понятия и защита программных продуктов
- •10.2. Классификация программного обеспечения
- •10.3. Системное программное обеспечение
- •10.4. Прикладное программное обеспечение
- •10.5. Инструментарий технологии программирования
- •10.6. Операционная система и ее состав
- •1. Пункт 1 1.1. Пункт 2 1.1.1. Пункт 3 2. Пункт 4 3. Пункт 5
- •4 40026, Пенза, Красная, 40. Тел./факс: (8412) 56-47-33; е-mail: iic@pnzgu.Ru
8.3. Топология сети
Компьютерную сеть представляют как совокупность узлов (компьютеров и сетевого оборудования) и соединяющих их ветвей (каналов связи).
Различают узлы оконечные, расположенные в конце только одной ветви, промежуточные, расположенные на концах более чем одной ветви; смежные, соединенные, по крайней мере, одним путем, не содержащим никаких других узлов.
Компьютеры могут объединяться в сеть разными способами. Логический и физический способ соединения компьютеров, кабелей и других компонентов, в целом составляющих сеть, называется ее топологией. Топология характеризует свойства сетей, не зависящие от их размеров (рис. 22).
Рис.
22. Распространенные топологии сетей:
а
линейная;
б
кольцевая;
г
звездообразная;
д
ячеистая
Наиболее распространены следующие виды топологий сетей:
– линейная, содержащая только два оконечных узла, любое число промежуточных узлов и имеющая только один путь между любыми двумя узлами;
– кольцевая, в которой к каждому узлу присоединены только две ветви;
– древовидная, содержащая более двух оконечных узлов и, по крайней мере, два промежуточных узла и имеющая между двумя узлами только один путь;
– звездообразная, имеющая только один промежуточный узел;
– ячеистая, содержащая два узла и имеющая два или более пути между ними. Это полносвязанная сеть, в которой имеется ветвь между любыми двумя узлами.
8.4. Передача данных
Любая коммуникационная сеть должна включать следующие основные компоненты: передатчик, сообщение, средства передачи, приемник.
Передатчик – устройство, являющееся источником данных.
Приемник – устройство, принимающее данные.
Приемником могут быть компьютер, терминал или какое-либо цифровое устройство.
Сообщение – цифровые данные определенного формата, предназначенные для передачи.
Это может быть файл базы данных, таблица, ответ на запрос, текст или изображение.
Средства передачи – физическая передающая среда и специальная аппаратура, обеспечивающая передачу сообщений.
Для передачи сообщений в вычислительных сетях используются: телефонные каналы, специальные каналы, радиоканалы и каналы спутниковой связи.
Для характеристики процесса обмена сообщениями в вычислительной сети по каналам связи используются следующие понятия: режим передачи, код передачи, тип синхронизации.
Существуют три режима передачи: симплексный, полудуплексный и дуплексный.
Симплексный режим – передача данных только в одном направлении.
Примером симплексного режима передачи является система, в которой информация, собираемая с помощью датчиков, передается для обработки на ЭВМ.
Полудуплексный режим – попеременная передача информации, когда источник и приемник последовательно меняются местами.
Дуплексный режим – одновременные передача и прием сообщений.
Дуплексный
режим является наиболее скоростным
режимом работы и позволяет эффективно
использовать вычислительные возможности
быстродействующих ЭВМ в сочетании с
высокой скоростью передачи данных по
каналам связи. Пример – телефонный
разговор.
Технические устройства, выполняющие функции сопряжения ЭВМ с каналами связи, называются адаптерами или сетевыми адаптерами. Один адаптер обеспечивает сопряжение с ЭВМ одного канала связи.
Кроме одноканальных адаптеров, используются и многоканальные устройства – мультиплексоры передачи данных.
Мультиплексор передачи данных – устройство сопряжения ЭВМ с несколькими каналами связи.
Для передачи цифровой информации по каналу связи необходимо поток битов преобразовать в аналоговые сигналы, а при приеме информации из канала связи в ЭВМ преобразовать аналоговые сигналы в поток битов, которые может обрабатывать ЭВМ. Такие преобразования выполняет модем.
Модем – устройство, выполняющее модуляцию и демодуляцию информационных сигналов при передаче их из ЭВМ в канал связи и при приеме в ЭВМ из канала связи.
Для выполнения функций коммутации используются специальные устройства – концентраторы.
Концентратор (хаб) – устройство, коммутирующее несколько каналов связи на один путем частотного разделения.
Для увеличения протяженности сети используются повторители.
Повторитель – устройство, обеспечивающее сохранение формы и амплитуды сигнала при передаче его на большее, чем предусмотрено данным типом физической передающей среды, расстояние.
Существуют локальные и дистанционные повторители. Локальные повторители позволяют соединять фрагменты сетей, расположенные на расстоянии до 50 м, а дистанционные – до 2000 м.
Мосты связывают две локальные сети. Они передают данные между сетями в пакетном виде, не производя в них никаких изме-нений.
Маршрутизатор объединяет сети с общим протоколом. Позволяет расщеплять большие сообщения на более мелкие части.
Шлюз в отличие от моста применяется в случаях, когда соединяемые сети имеют различные сетевые протоколы. Поступившее в шлюз сообщение от одной сети преобразуется в другое сообщение, соответствующее требованиям следующей сети.
Для оценки качества коммуникационной сети можно использовать следующие характеристики:
– скорость передачи данных по каналу связи;
– пропускную способность канала связи;
– достоверность передачи информации;
– надежность канала связи и модемов.
Скорость передачи данных по каналу связи измеряется количеством битов информации, передаваемых за единицу времени – секунду.
Скорость передачи данных зависит от типа и качества канала связи, типа используемых модемов и принятого способа синхронизации.
Так, для асинхронных модемов и телефонного канала связи диапазон скоростей составляет 300–9600 бит/с, а для синхронных –1200–19 200 бит/с.
Более удобной характеристикой канала является его пропускная способность, которая оценивается количеством знаков, передаваемых по каналу за единицу времени – секунду. При этом в состав сообщения включаются и все служебные символы. Теоретическая пропускная способность определяется скоростью передачи данных. Реальная пропускная способность зависит от ряда факторов, среди которых и способ передачи, и качество канала связи, и условия его эксплуатации, и структура сообщений.
Существенной характеристикой коммуникационной системы любой сети является достоверность передаваемой информации. Требуемый уровень достоверности должны обеспечивать как аппаратура, так и канал связи. Нецелесообразно использовать дорогостоящую аппаратуру, если относительно уровня достоверности канал связи не обеспечивает необходимых требований. Единица измерения достоверности: количество ошибок на знак – ошибок/знак.
Для вычислительных сетей этот показатель должен лежать в пределах 10–6 – 10–7 ошибок/знак, т.е. допускается одна ошибка на миллион переданных знаков или на десять миллионов переданных знаков.
Надежность коммуникационной системы определяется либо долей времени исправного состояния в общем времени работы, либо средним временем безотказной работы. Вторая характеристика позволяет более эффективно оценить надежность системы.
Единица измерения надежности: среднее время безотказной работы – час.
Для вычислительных сетей среднее время безотказной работы должно быть достаточно большим и составлять, как минимум, несколько тысяч часов.